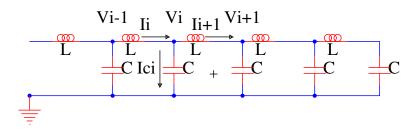
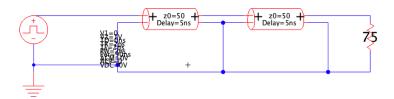
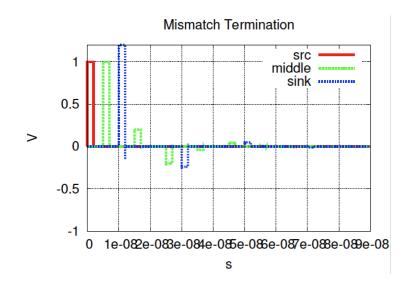

1. What is the step response of an RC ladder chain?


2. What is the response of a 1-stage LC ladder?

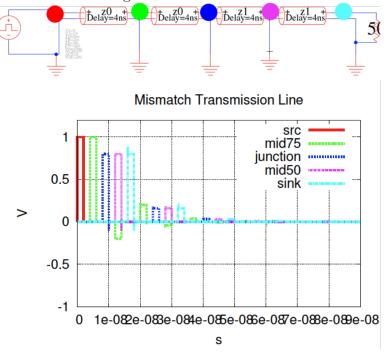
3. What is the step response of an LC ladder chain?

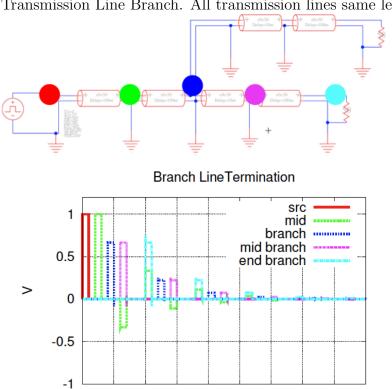

4. Considering:



- (a) Write Q needed to charge C to V_i
- (b) What is I_i given charge velocity $w = \frac{1}{\sqrt{LC}}$?
 (c) Combine (a) and (b) and solve for $R = \frac{V_i}{I_i}$
- 5. What happens at source end of transmission line?

1			


6. Below we see what happens when a short-circuit source drives a 50Ω line with a 75Ω termination.



- 7. Consider a 25 meter long Category-5e cable with w=0.64c (Speed of light $c=3\times 10^8 \mathrm{m/s}$) used for 1 Gigabit ethernet. Each of the 4 cable pairs supports bits at 250Mb/s.
 - (a) How long (in nanoseconds) does it take for a bit to travel the 25 meter length of the cable?
 - (b) How long (in nanoseconds) between introducting bits onto the cable?
 - (c) How many bits are on each wire pair "in the cable" at any point in time?
- 8. What effects limit throughput of bit pipelining on a transmission line?
- 9. What happens if there is a resistance $R = 0.2\Omega$ every meter of an otherwise lossless 100Ω transmission line (Category-5e cable)?
 - (a) Voltage impact at each meter?
 - (b) How long can cable be before voltage reduced by one half?

10. What happens when impedance of line changes? ($Z_0=75\Omega$ to $Z_1=50\Omega$). All transmission lines same length.

11. Transmission Line Branch. All transmission lines same length with $Z_0 = 50\Omega$.

1e-0&e-0&e-0&e-0&e-0&e-0&e-0&e-0

S