N-type MOSFET

Zero-Order Model

$I_{d s}$ unbounded when $V_{g s}>V_{t h}$
(even this is a simplified approximation)

	NMOS	PMOS
Threshold	$V_{t h n}>0$	$\begin{gathered} \hline \hline V_{t h p}<0 \\ V_{t h p} \approx-V_{t h n} \end{gathered}$
Conduct	positive input $V_{g s}>V_{t h n}$	negative input $V_{g s}<V_{t h p}$
Drain	most positive terminal	most negative terminal
Source	most negative terminal (source of electrons)	most positive terminal (source of holes)

$$
\begin{equation*}
V_{g s}=V_{g}-V_{s} \tag{1}
\end{equation*}
$$

1. What function does this circuit implement? (inputs are a and b)
[N.B. crossing wires with no dot are not connected.]

2. If $\bar{f}=a+b$, what is f in minimum-sum-of-products form?
$\left[\right.$ N.B. $\left.\bar{f}=\sim \mathrm{f}=/ \mathrm{f}=(\operatorname{not} \mathrm{f})=\mathrm{f}^{\prime}\right]$
\square
3. Design gate to perform: $f=(\bar{a}+\bar{b}) \cdot \bar{c}$
4. Simplify the boolean expression $Z=\bar{A} \cdot \bar{B}+A \cdot \bar{B}+\bar{A} \cdot B$ to the minimum sum of products with the 2-variable K-map:

A | B | $0 \quad 1$ | |
| :--- | :--- | :--- |
| 0 | | |
| | | |
| | | |

5. Simplify the boolean expression $Z=\bar{A} \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B+A \cdot B \cdot \bar{C}+A \cdot C$ to the minimum sum of products with the 3 -variable K-map:

$A A^{B}$	${ }^{3} \mathrm{C}_{00}$	$01 \quad 11 \quad 10$		
0				
1				

6. Extra practice for outside of class:

Simplify the boolean expression $Z=A \cdot B \cdot C+A \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C$ to the minimum sum of products with the 3 -variable K-map:

Simplify the truth table to the minimum sum of products with the 4 -variable K-map:

A	B	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

