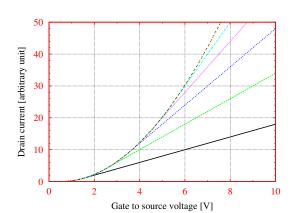
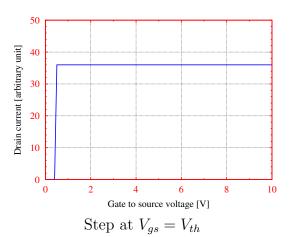
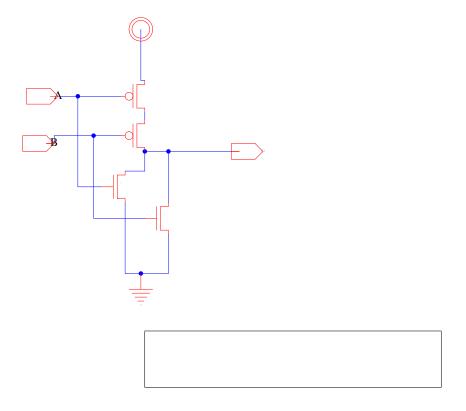

N-type MOSFET


Zero-Order Model



 I_{ds} unbounded when $V_{gs} > V_{th}$

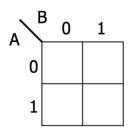

(even this is a simplified approximation)

	NMOS	PMOS
Threshold	$V_{thn} > 0$	$V_{thp} < 0$
		$V_{thp} pprox -V_{thn}$
Conduct	positive input	negative input
	$V_{gs} > V_{thn}$	$V_{gs} < V_{thp}$
Drain	most positive terminal	most negative terminal
Source	most negative terminal	most positive terminal
	(source of electrons)	(source of holes)

$$V_{gs} = V_g - V_s \tag{1}$$

1. What function does this circuit implement? (inputs are a and b)

[N.B. crossing wires with no dot are **not** connected.]


2. If $\overline{f} = a + b$, what is f in minimum-sum-of-products form?

[N.B.
$$\overline{f} = \sim f = /f = (\text{not } f) = f'$$
]

3. Design gate to perform: $f = (\overline{a} + \overline{b}) \cdot \overline{c}$

4. Simplify the boolean expression $Z = \overline{A} \cdot \overline{B} + A \cdot \overline{B} + \overline{A} \cdot B$ to the minimum sum of products with the 2-variable K-map:

5. Simplify the boolean expression $Z = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B + A \cdot B \cdot \overline{C} + A \cdot C$ to the minimum sum of products with the 3-variable K-map:

A B	C 00	01	11	10
0				
1				

6. Extra practice for outside of class:

Simplify the boolean expression $Z = A \cdot B \cdot C + A \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$ to the minimum sum of products with the 3-variable K-map:

AB	C 00	01	11	10
0				
1				

Simplify the truth table to the minimum sum of products with the 4-variable K-map:

Α	В	С	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

D	•		
00	01	11	10
	D 00		