ESE3700: Circuit-Level Modeling, Design and Optimization for Digital Systems

Lec 3: January 31, 2024 Transistor First Order Model, Delay, and RC Response

- Transistor First-Order Model
- **RC** Charging
 - RC Step Response Curve
- What is the C?
 - Capacitive load on logic gate output node
- What is the R?
 - Equivalent output resistance on the current path driving the output node
- Approximating and Measuring Delay
 - Tau estimate!

Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?

Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?

□ Bonus question: Which one will settle faster?

Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?

Assume V_{in} is 0 for t < 0 and steps to 1V at t = 0.

What value does $V_{measure}$ take on as $t \to \infty$?

- DC/Steady-State
 - Ignore the capacitors
 - Look like "open circuit"

Ideal Switch

V_{GS} > V_{th} → switch is closed, conducts
 V_{GS} < V_{th} → switch is open, does not conduct
 Gate draws no current from input

Loads input capacitively (gate capacitance)

Switch

Loads gate input capacitively

• C_g

Has finite drive strength

R_{on}

Switch

Loads gate input capacitively

• C_g

Has finite drive strength

R_{on}

 \Box What is V_{IN} for this switch pattern?

\square Look at intermediary node V₂

• Connected to output of stage 1 and input of stage 2

What is equivalent circuit for the gate output of stage 1 driving V₂? What is load on the output of stage 1?

Stage 1 equivalent circuit for the gate output
Load on V₂

• Capacitive, input of stage 2

Stage 1 equivalent circuit for the gate output
Load on V₂

• Capacitive, input of stage 2

What is time constant of V₂ when V_{in} switches from V_{DD} to 0?

What is time constant of V₂ when V_{in} switches from V_{DD} to 0?

• $\tau = 2R_{on}C_g$

- Includes settling times/delay
- Voltage settling with capacitive loads
 - At least some basis for reasoning about delay

IV curve

1st Order

IV curve

1st Order

What is still missing?

- What happens at intermediate voltages?
 - When the input is not rail-to-rail (not just gnd or V_{dd} inputs)
- Details of dynamics, including...
 - Input transition is not an ideal step
 - Intermediate drive strengths change with V_{GS}
 - Drain resistance changes
- Sub-threshold operation
 - When $V_{gs} < V_{th}$

Design: Engineering Control

- $\ \ \, \Box \ \, V_{th}$
 - Process engineer
- **Drive strength** (R_{on})
 - Circuit engineer
 - Control with sizing transistors
- **\Box** Supply voltages (V_{dd})
 - Range set by process engineer
 - Detail use by circuit engineer

- □ Sanity check
 - Wire twice as long = resistors in series
 - Wire twice as wide = resistors in parallel

□ Sanity check

- Wire twice as long = capacitors in parallel
- Wire twice as wide = capacitors in parallel

There are always Rs and Cs

- Every wire (connection) has resistance
- Every wire has capacitance
- (Every wire has inductance)
 - More later
- Dominant effects
 - $R_{big} + R_{small} \approx R_{big}$ ($R_{wire} << R_{on}$)?
 - $C_{\text{big}} \mid \mid C_{\text{small}} \approx C_{\text{big}} \quad (C_{\text{wire}} < < C_g)$?
 - Today more likely $(C_{wire} >> C_g)$

What is final V_{measure} ? What is time constant, τ ?

 \Box KCL @ V_{measure}

- Kirchoff's Current Law
 - Sum of all currents into a node = 0
 - Current entering a node = current exiting a node
- $I_R = I_C$

$$V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

t (in ps)	e ^{-t/RC}	$1-e^{-t/RC}$
0		
0.1		
1		
2		
2.3		

$$V_{in}=1 \qquad V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

t (in ps)	e ^{-t/RC}	$1-e^{-t/RC}$
0	1	0
0.1	0.9	0.1 10%
1	1/e = 0.37	0.66
2	$1/e^2 = 0.14$	0.86
2.3	0.1	0.9 90%

$$V_{in}=1 \qquad V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$$

At what time is $V_{measure}$ 50% of its value?

	t (in ps)	e ^{-t/RC}	$1-e^{-t/RC}$			
	0	1	0			
	0.1	0.9	0.1 10%			
	0.69	0.5	0.5 50%			
	1	1/e = 0.37	0.66			
	2	$1/e^2 = 0.14$	0.86 <mark>90%</mark>			
	2.3	0.1	0.9			
V	$V_{in}=1 \qquad V_{measure} = V_{in} \left(1 - \left(e^{-t/RC} \right) \right)$					

Propagation Delay Definitions

Voltage Waveform at Output/Input Node

Voltage Waveform at Output/Input Node

What is C?

□ Wire

- Fanout -- Total gate load
 - Logical Gate
 - MOSFET gate

□ Number of things to which a gate output connects

• Output routed to many gate inputs

- □ Maximum fanout?
- □ Second?
- □ Min?

- □ Maximum fanout?
- □ Second?
- □ Min?

- □ Maximum fanout?
- □ Second?
- □ Min?

- □ Maximum fanout?
- □ Second?
- □ Min?

- □ Maximum fanout?
- □ Second?
- □ Min?

What is R?

- □ Wire resistance
 - From supply (Vdd or Gnd) to transistor source
 - From transistor output to gate it is driving
- \Box Transistor equivalent resistance (R_{on})

Penn ESE 3700 Spring 2024 - Khanna

$$R_{drive} = R_{tr,net} + \sum_{i \in wires} R_{w_i}$$

 $R_{tr,net}$ = transistor network resistance = parallel and series combination of R_{tr} Voltage Waveform at Output/Input Node

Measuring Delay

Next stage starts to switch before first finishes

Measure from 50% of input swing to 50% of output swing

Characterizing Gate/Technology

- Delay measure of a logic gate will be
 - Function of load on logic gate
 - Function of input signal rise time
 - Which, in turn, may be a function of input loading from the driving logic gate

 If we didn't know the input rise time, we wouldn't know what a 13ps delay meant

Penn ESE 3700 Spring 2024 - Khanna

- Voltage transfer characteristic for noise margins:
- V_{IL}, V_{IH}
 V_{OL}, V_{OH}

$$\mathbf{N}\mathbf{M}_{\mathrm{L}} = \mathbf{V}_{\mathrm{IL}} - \mathbf{V}_{\mathrm{OL}}$$
$$\mathbf{N}\mathbf{M}_{\mathrm{H}} = \mathbf{V}_{\mathrm{OH}} - \mathbf{V}_{\mathrm{IH}}$$

Characterizing Gate/Technology

Delay measure will be

- Function of load on gate
- Function of input signal rise time
 - Which, in turn, may be a function of input loading
- □ Want to understand typical delay times
 - Allows us to compare designs with a (somewhat) normalized delay metric

Standard Measurement for Characterization

- Drive with a gate
 - Not an ideal source
 - Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4

Not realistic measurement

HW2 Measurement Setup

Measurement for Characterization

Drive with a gate

- Not an ideal source (how does delay change if drive is ideal?)
- Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4

Measurement for Characterization

Drive with a gate

- Not an ideal source
- Input rise time typically would see in circuit
- Measure loaded gate
 - Typical loading FO4 (how does delay change if gate is unloaded?)

*** spice deck for cell nand2trans{sch} from library test

- MOSFET Transistor as switch
 - With limited drive
- Purpose-driven simplified modeling
 - Aid reasoning, sanity check, simplify design
- Analysis methodology
 - Zero order to understand switch state (logic)
 - First-order to get equivalent RC circuit (delay)

- □ HW 1 due 2/2 (Friday)
 - Leave enough time to submit on Gradescope
 - Make sure you assign pages
 - If it records as after midnight will use up a late day
- □ HW2 posted 2/2 (Friday) due 2/9
- Setup Spice Work Flow
 - access to electric, setup for spice, run ngspice
 - See tool guides on website
 - https://www.seas.upenn.edu/~ese3700/#tools
 - read spice style guide on webpage:
 - https://www.seas.upenn.edu/~ese3700/spring2024/handouts/spi ce_style_guide.pdf
- □ All office hours posted on website with locations

- Prof. André DeHon (University of Pennsylvania)
- □ Prof. Jing Li (University of Pennsylvania)