- 1. Consider an NMOS transistor with L_{eff} =25nm and V_{ds} =1V
 - (a) What is the electrical field (F) in $V/\mu m$ in the channel between source and drain?

$$(F = V/L)$$

(b) With an electron mobility of $\mu_n=500 \text{ cm}^2/(\text{V}\cdot\text{s})$, what is the velocity of the electron in this field? (in m/s)?

(velocity
$$v = \mu \times F$$
)

(c) At what V_{ds} voltage does the velocity reach 10^5 m/s?

2. How many capacitance values might we need to represent a 4-terminal transistor? (fourth terminal is body)

Hint: How many terminal pairs are there?

Terminal Pair	Capacitance

Use in class for notes to summarize cases and capacitances.

3. Assuming a step input from 0 to 1V by the pulse generator on the left, what does the voltage on Vout as a function of time look like?

Hints: What is the initial voltage? What is the steady-state voltage as $t \to \infty$?