

1. Under ideal scaling, how do the following characteristics scale? (get started on what you can; we will complete together during lecture)

Area	
Capacitance, C_{ox}	
Capacitance, C_g	
Resistance	
V_{th}	1/S (given)
Current (I_{ds})	
Gate Delay (τ_{gd})	
Wire Delay	
Power [same freq]	
Power [scale freq $1/\tau_{td}$]	
Power Density (P/A) [same freq (f)]	
Power Density (P/A) [scale freq $1/\tau_{td}$]	

Note: Dynamic power in CMOS is capacitive charging: $P \propto CV^2 f$ (we will address on future lectures)

- 2. Assuming $V_{dd}=10$ V in a 10 μ m process and $V_{dd}=1$ V in a 100nm process: (assume everything else scales according to ideal scaling.)
 - (a) What is the voltage scaled by (U)?
 - (b) What is the feature size scaled by (S)?
 - (c) How much faster are the gates than ideal scaling?
 - (d) Assuming you can exploit this gate speedup to increase frequency of operation,

how does power density scale?

- 3. What is the variation impact on I_d :
 - W ?
 - L ?
 - t_{OX} ?
 - V_{th} ?
- 4. Assuming $V_{th,nom}=250$ mV and $\sigma_{V_{th}}=25$ mV, there is roughly a 96% probability that a given transistor has a V_{th} between 200mV and 300mV. What is the probability that all transistors in a 100 transistor circuit have a V_{th} between 200mV and 300mV?
- 5. Recompute the probability that **all** 100 transistors are in range when each transistor has a 99.8% probability of being in range.

6. If we need high and low brackets for N parameters, how many cases must we consider?

Resistive:

$$I_D = \mu_n C_{OX} \left(\frac{W}{L}\right) \left(\left(V_{GS} - V_{th}\right) V_{DS} - \frac{\left(V_{DS}\right)^2}{2} \right)$$
(1)

Saturated (Pinch Off):

$$I_D = \frac{1}{2} \mu_n C_{OX} \left(\frac{W}{L}\right) \left(V_{GS} - V_{th}\right)^2 \tag{2}$$

Velocity Saturated:

$$I_D = \nu_{sat} C_{OX} W \left(V_{GS} - V_{th} - \frac{V_{DSAT}}{2} \right)$$
(3)

Subthreshold:

$$I_D = I_S \left(\frac{W}{L}\right) e^{\frac{V_{GS} - V_{th}}{nkT/q}} \tag{4}$$