
ESE5320 Fall 2023

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE5320, Fall 2023 Final Tuesday, December 19

• Exam ends at 5:00pm; begin as instructed (target 3:00pm)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration. All answers here.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2a 2b 3 4 5 6a 6b 6c 7a 7b 7c 7d Total

10 5 5 10 10 20 10 5 10 5 3 2 5 100

1

ESE5320 Fall 2023

Consider the following code for video compression:

#include<stdint.h>

#include<stdlib.h>

#include<stdbool.h>

#define HEIGHT 1024

#define WIDTH 1024

#define M 32

#define BH 16

#define BW 16

#define MAX_MATCH_COST (BH*BW*1<<16)

// by default these live in main memory

uint16_t yweight[BH][BW]; // static declartion of contents not shown

uint16_t xweight[BH][BW]; // static declartion of contents not shown

// by default these live in main memory

uint16_t current[HEIGHT][WIDTH]; // in an image memory

uint16_t previous[HEIGHT][WIDTH]; // in an image memory

uint16_t transform[HEIGHT][WIDTH]; // also in an image memory

uint16_t best_move_by[HEIGHT/BH][WIDTH/BW];

uint16_t best_move_bx[HEIGHT/BH][WIDTH/BW];

void write_compressed(uint16_t value); // treat like .write on stream<uint16_t> *

// -- takes one cycle; account as memory operation

void get_image(uint16_t from_img[HEIGHT][WIDTH]); // assume take negligble time

 // changes pointers to reassign which memory holds which image

void update_previous(uint16_t from_img[HEIGHT][WIDTH],

 uint16_t to_img[HEIGHT][WIDTH]);

 // changes pointers to reassign which memory holds which image

void motion_estimate(uint16_t previous[HEIGHT][WIDTH],

 uint16_t current[HEIGHT][WIDTH],

 uint16_t best_move_by[HEIGHT/BH][WIDTH/BW],

 uint16_t best_move_bx[HEIGHT/BH][WIDTH/BW]);

 // see next page

void transform_difference(uint16_t previous[HEIGHT][WIDTH],

 uint16_t current[HEIGHT][WIDTH],

 uint16_t best_move_by[HEIGHT/BH][WIDTH/BW],

 uint16_t best_move_bx[HEIGHT/BH][WIDTH/BW],

 uint16_t transform[HEIGHT][WIDTH]

);

 // see next page

void send_difference(uint16_t transform[HEIGHT][WIDTH]);

 // see next page

int main()

{

 while(true)

 {

 get_image(current); // assume comes form camera via DMA -- no time for this routine

 motion_estimate(previous,current,best_move_by,best_move_bx);

 transform_difference(previous,current,best_move_by,best_move_bx,transform);

 send_difference(transform);

 update_previous(previous,current);

 }

}

2

ESE5320 Fall 2023

void motion_estimate(uint16_t previous[HEIGHT][WIDTH],

 uint16_t current[HEIGHT][WIDTH],

 uint16_t best_move_by[HEIGHT/BH][WIDTH/BW],

 uint16_t best_move_bx[HEIGHT/BH][WIDTH/BW]) {

 for (int ih=0;ih<HEIGHT;ih+=BH) // loop A

 for (int iw=0;iw<WIDTH;iw+=BW) // loop B

 {

 uint16_t best_offset_x=0;

 uint16_t best_offset_y=0;

 uint32_t best_offset_cost=MAX_MATCH_COST;

 // range adjustment to deal with out-of-bound references omitted for simplicity

 for(int voffset=-M;voffset<M;voffset++) // loop C

 for(int hoffset=-M;hoffset<M;hoffset++) // loop D

 {

 uint32_t cost=0;

 for(int by=0;by<BH;by++) // loop E

 for(int bx=0;bx<BW;bx++) // loop F

 cost+=abs(current[ih+voffset+by][iw+hoffset+bx]

 -previous[ih+by][iw+bx]);

 if (cost<best_offset_cost) {

 best_offset_y=voffset; best_offset_x=hoffset;

 best_offset_cost=cost;

 }

 }

 best_move_by[ih/BH][iw/BW]=best_offset_y;

 best_move_bx[ih/BH][iw/BW]=best_offset_x;

 }

}

void transform2d (uint16_t block[BH][BW],

 uint16_t tblock[BH][BW]){

 uint16_t xblock[BH][BW];

 for(int by=0;by<BH;by++) // loop K

 for(int wx=0;wx<BW;wx++) // loop L

 {

 xblock[by][wx]=0;

 for(int bx=0;bx<BW;bx++) // loop M

 xblock[by][wx]+=block[by][bx]*xweight[wx][bx];

 }

 for(int bx=0;bx<BW;bx++) // loop N

 for(int wy=0;wy<BH;wy++) // loop O

 {

 tblock[wy][bx]=0;

 for(int by=0;by<BH;by++) // loop P

 tblock[wy][bx]+=block[by][bx]*yweight[wy][by];

 // should be: tblock[wy][bx]+=xblock[by][bx]*yweight[wy][by];

 }

}

3

ESE5320 Fall 2023

void transform_difference(uint16_t previous[HEIGHT][WIDTH],

 uint16_t current[HEIGHT][WIDTH],

 uint16_t best_move_by[HEIGHT/BH][WIDTH/BW],

 uint16_t best_move_bx[HEIGHT/BH][WIDTH/BW],

 uint16_t transform[HEIGHT][WIDTH]

) {

 for (int ih=0;ih<HEIGHT;ih+=BH) // loop G

 for (int iw=0;iw<WIDTH;iw+=BW) // loop H

 {

 uint16_t block[BH][BW];

 uint16_t voffset=best_move_by[ih/BH][iw/BW];

 uint16_t hoffset=best_move_bx[ih/BH][iw/BW];

 for(int by=0;by<BH;by++) // loop I

 for(int bx=0;bx<BW;bx++) // loop J

 block[by][bx]=current[ih+voffset+by][iw+hoffset+bx]

 -previous[ih+by][iw+bx];

 uint16_t tblock[BH][BW];

 transform2d(block,tblock);

 for(int by=0;by<BH;by++) // loop Q

 for(int bx=0;bx<BW;bx++) // loop R

 transform[ih+by][iw+bx]=tblock[by][bx];

 }

}

void send_difference(uint16_t transform[HEIGHT][WIDTH])

{

 for (int ih=0;ih<HEIGHT;ih+=BH) // loop S

 for (int iw=0;iw<WIDTH;iw+=BW) // loop T

 {

 uint16_t count=0;

 uint16_t zzblock[BH*BW];

 uint16_t zzpos=0;

 for (int sy=0;sy<BH;sy++) // loop U

 for (int bx=0;bx<=sy;bx++) // loop V

 {

 uint16_t next=transform[ih+sy-bx][iw+bx];

 zzblock[zzpos]=next;

 if (next!=0) count=zzpos;

 zzpos++;

 }

 write_compressed(count+1);

 for (int i=0;i<(count+1);i++) // loop W

 write_compressed(zzblock[i]);

 }

}

4

ESE5320 Fall 2023

(This page intentionally left blank for pagination.)

5

ESE5320 Fall 2023

We start with a baseline, single processor system as shown.

64KB

P

local
scratchpad
memory

simple,
sequential
processor
core

Baseline SoC
V

id
e
o
 i
n

D
M

A

32GB/s

image
memory

image
memory

image
memory

main
memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count as
adds), compares, min, max, abs, divides, and multplies as the only compute operations.
We’ll assume the other operations take negligible time or can be run in parallel (ILP)
with the adds, multiplies, and memory operations. (Some consequences: You may
ignore loop and conditional overheads in processor runtime estimates; you may ignore
computations in array indices.)

• Baseline processor can execute one multiply, divide, compare, min, max, abs, or add
per cycle and runs at 1 GHz.

• Data can be transfered from main memory and each of the 2MB image memories at
32 GB/s when streamed in chunks of at least 96B. Assume for loops that only copy
data can be auto converted into streaming operations.

• Non-streamed access to the main memory and each of the 2MB image memories takes
10 cycles.

• Baseline processor has a local scratchpad memory that holds 64KB of data. Data can
be streamed into the local scratchpad memory at 32 GB/s. Non-streamed accesses to
the local scratchpad memory take 1 cycle.

• By default, all arrays live in the main memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, abs, adds, min, max, divide and multiplies take 1 ns when im-

plemented in hardware accelerator, so fully pipelined accelerators also run at 1 GHz.
A compare-mux operation can also be implemented in 1 ns.

• Data can be transfered to accelerator local memory at the same 32 GB/s when streamed
in chunks of at least 96B.

• image arrays (current, previous, one for input before becomes current, transform)
live in image memories; role of memories is changed each iteration using get image

and update previous using a double-buffer technique.

6

ESE5320 Fall 2023

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time for compute operations and memory
access for the computing components of main.
(Treat write compressed cycle as a memory operation.)

loop Compute Memory

motion estimate 642 × 642 × 162 × 3 642 × 642 × 162 × 2× 10

+642 × 2× 10

= 12,884,901,888 = 85,899,427,840

transform difference 642 × 162 × 1 642 × 162 × 3× 10

+642 × 163 × 2× 2 +642 × 163 × 2× 3× 10

0 +642 × 162 × 2× 10

= 68,157,440 = 1,059,061,760

send difference 642 × 136× 2 642 × 136× (3× 10 + 1)

=1,114,112 =17,268,736

main 12,954,173,440 86,975,758,336

7

ESE5320 Fall 2023

2. Based on the simple, single processor mapping from Problem 1:

(a) What loop is the bottleneck? (circle one)

(motion estimate)

transform difference

send difference

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?
12,954,173,440+86,975,758,336

68,157,440+1,059,061,760+1,114,112+17,268,736 ≈ 87

8

ESE5320 Fall 2023

3. Parallelism in Loops

(a) Classify the following loops as data parallel, reduce, or sequential?

(b) Explain why or why not?

Loop circle one Why?

A/B (Data Reduce Sequential
each block is independent

Parallel)

C/D Data (Reduce) Sequential
sum reduce across block at window offset

Parallel

E/F Data (Reduce) Sequential
Min reduce across each offset

Parallel

G/H Data Reduce Sequential
each block is independent

Parallel

K Data Reduce Sequential
each xblock entry is computed

Parallel
independently

L Data Reduce Sequential
each xblock entry is computed

Parallel
independently

M Data Reduce Sequential
sum reduce across x dimension

Parallel

9

ESE5320 Fall 2023

4. What is the critical path (latency bound) transform difference?

G/H read best move by, best move bx (all parallel) 10

transform2d: K/L read xweight parallel with above 0

transform2d: N/O read yweight parallel with above 0

I/J read current, previous (all parallel) 10

I/J subtract 1

transform2d: K/L/M multiply 1

transform2d: K/L/M add reduce for xblock[by][wx] 4

transform2d: N/O/P multiply 1

transform2d: N/O/P add reduce for block[wy][bx] 4

Q/R write transform (all parallel) 10

Total 41

10

ESE5320 Fall 2023

(This page intentionally left mostly blank for answers.)

11

ESE5320 Fall 2023

5. Rewrite the body of motion estimate to minimize the memory resource bound by
exploiting the scratchpad memory and streaming memory operations.

• Annotate what arrays live in the local scratchpad

• Account for total memory usage in the local scratchpad (use provided table)

• Provide your modifications to the code.

– Use for loops that only copy data to denote the streaming operations

• Estimate the new memory resource bound for your optimized compress and send.

Variable Size (Bytes)

match block 16× 16× 2 = 512

search window (32× 2 + 16)2 × 2 = 12, 800

current and previous reads reduce from 10 to 1, so first term
for A becomes: 642 × 642 × 162 × 2× 1 = 8, 589, 934, 592.
Since the search window is 80 × 2 > 96 bytes wide, we can
stream the rows. Add in streaming for search window: 642 ×
802×2

32 =2,359,296.

Since the match blocks are only 16× 2 = 32 bytes, they cannot
be streamed, but they only need to be read once. This would
add in match block reads: 642× 162× 10 = 10, 485, 760. But,
if we instead make match block larger (48×48 – just read more

than necessary), then can stream: 642 × 482×2
32 = 589, 824. This

takes less time, so we use it.
Leave transform difference, send difference unchanged
(also best cost part of A):
81,920+1,059,061,760+17,268,736
Memory Resource Bound: 9,666,936,832

12

ESE5320 Fall 2023

(This page intentionally left mostly blank for answers.)

void motion_estimation(uint16_t previous[HEIGHT][WIDTH],

uint16_t current[HEIGHT][WIDTH]) {

for (int ih=0;ih<HEIGHT;ih+=BH) // loop A

for (int iw=0;iw<WIDTH;iw+=BW) // loop B

{

uint16_t best_offset_x=0;

uint16_t best_offset_y=0;

uint16_t search_window[2*M+BH][2*M+BW];

uint16_t match_block[BH][BW];

for(int by=0;by<BH;by++)

for(int bx=0;bx<BW;bx++)

match_block[by][bx]=previous[ih+by][iw+bx];

for(int voffset=-M;voffset<M+BH;voffset++)

for(int hoffset=-M;hoffset<M+BW;hoffset++) // stream read

search_window[voffset+M][hoffset+M]=current[ih+voffset][iw+hoffset];

// range adjustment to deal with out-of-bound references omitted for simplicity

for(int voffset=0;voffset<2*M;voffset++) // loop C

for(int hoffset=0;hoffset<2*M;hoffset++) // loop D

{

uint32_t cost=0;

for(int by=0;by<BH;by++) // loop E

for(int bx=0;bx<BW;bx++) // loop F

cost+=abs(search_window[voffset+by][hoffset+bx]

-match_block[by][bx]);

if (cost<best_offset_cost) {

best_offset_y=voffset-M; best_offset_x=hoffset-M;

best_offset_cost=cost;

}

}

best_move_by[ih/BH][iw/BW]=best_offset_y;

best_move_bx[ih/BH][iw/BW]=best_offset_x;

}

13

ESE5320 Fall 2023

6. Considering a custom hardware accelerator implementation for loops A–F of motion estimate

where you are designing both the compute operators and the associated memory archi-
tecture. How would you use loop unrolling and array partitioning to achieve guaranteed
throughput of 30 frames per second while minimizing area?

Make the (probably unreasonable) assumption that reads from these memories can be
completed in one cycle.

(a) Unrolling for each loop?

The difference, abs, sum will be pipelined, so without un-
rolling this takes 642×642×162 = 4, 294, 967, 296 computa-
tional cycles. We need to perform 30 of these per second. We

get 109 cyclesa per second, so we need to compute in 109

30 cy-

cles. This means we need to accelerate by 4,294,967,296
109
30

≈ 129.

Acceleration by 256 will be sufficient, which we can do by
unrolling the two innermost loops.

Loop Unroll Factor

A 1

B 1

C 1

D 1

E 16

F 16

(b) For the unrolling, how many absolute value and adders?

Absolute Value 256

Adders 512

14

ESE5320 Fall 2023

(c) Array partitioning for each array used in local memories in the accelerator?

Note: local arrays may be ones added when optimizing memory in Question 5. If
add additional memories, describe as necessary.

Array Replicas Array Ports Width Depth

Partition per Partition

(in Width words)

match block 1 complete 1 16b 1

search window 1 cyclic 16, 16 1 16b 25

15

ESE5320 Fall 2023

7. VLIW: Define the composition of a custom VLIW datapath for motion estimate loop
F achieving an II of 1, which can also be expressed as:
// cptr=&(current[ih+voffset][iw+hoffset]);

// pptr=&(previous[ih][iw]);

// for(int yi=0;yi<BH;yi++) { // loop E

// cptr=cptr+WIDTH; pptr=pptr+WIDTH;

// xi=BW

// cost=0;

while(xi>0) { // Make this loop II=1 (loop F)

xi--;

cptr++;

pptr++

cval=*cptr;

pval=*pptr;

diff=cval-pval;

adiff=abs(diff)

cost=cost+adiff;

} // close on loop F

// } // (close on loop E)

For full credit, minimize area of your implementation.
Assume:

• Monlithic register file supporting all operators and memories.
• pieces of current and previous exist in scratchpads that can be accessed in one

cycle by this VLIW; (loading into those scratchpads occurs outside of loop F.)

(a) How many operators of each type so the Resource Bound II is 1.

Operator Inputs Outputs Number

incrementers/decrementers 1 1 3
abs 2 1 1

ALU (includes |, &, +, - , >, <, == 2 1 3
ports to memory containing cscratch[] 1 1 1
ports to memory containing pscratch[] 1 1 1

branch units 1 0 1

(b) What is the latency of the loop F body? Identify Critical Path and give length.

1 xi>0, (branch to skip), xi–, cptr++, pptr++

2 cval=*cptr; pval=*pptr

3 diff=cval-pval

4 adiff=abs(diff)

5 cost=cost+adiff

16

ESE5320 Fall 2023

Latency=5
(c) Can you schedule to achieve the resource bound II of 1? Why or why not?

Yes. Only cycle is cost=cost+diff of length 1 (or callout that
the cycle bound II is 1). So II=1 and rest is pipelineable.
Or callout only dependence between loops is the cost, and
cost update can be performed in one cycle.
Common Problem: Not being specific about dependencies or cycle.

17

ESE5320 Fall 2023

(d
)

P
ro

v
id

e
a

sc
h
ed

u
le

m
in

im
iz

in
g

II
.

M
ak

e
su

re
sc

h
ed

u
le

cl
ea

rl
y

d
en

ot
es

st
ea

d
y
-s

ta
te

b
eh

av
io

r
an

d
II

.
Y

ou
d
o

n
ot

n
ee

d
to

sh
ow

p
ro

lo
gu

e
an

d
ep

il
og

u
e.

L
ab

el
w

it
h

yo
u
r

se
le

ct
ed

op
er

at
or

s
O

p
er

at
or
→

C
y
cl

e
in

c0
in

c1
in

c2
ab

s
A

L
U

1
A

L
U

2
A

L
U

3
cs

cr
at

ch
re

ad
p

sc
ra

tc
h

re
ad

b
r

0
xi

-4
cp

tr
-4

p
p

tr
-4

ad
iff

-1
xi
>

0
d

iff
-

2
co

st
0

cv
al

-3
pv

al
-3

b
r

-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
ab

el
ce

ll
s

w
it

h
th

e
va

ri
ab

le
as

si
gn

ed
b
y

th
e

op
er

at
io

n
(o

r
ar

ra
y

en
tr

y
w

ri
tt

en
)

an
d

th
e

it
er

at
io

n
off

se
t.

18

ESE5320 Fall 2023

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone else’s ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on one’s resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for one’s own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

19

