
1

Penn ESE5320 Fall 2023 -- DeHon 1

ESE5320:
System-on-a-Chip Architecture

Day 20: November 8, 2023
Verification 1

1

Penn ESE5320 Fall 2023 -- DeHon 2

Today
• Part 1:

– Motivation
– Challenge and Coverage

• Part 2:
– Golden Model / Reference Specification

• Part 3:
– Automation and Regression

2

Message
• If you don’t test it, it doesn’t work.

• Verification is important and challenging
• Demands careful thought

– Tractable and adequate coverage
• Value to a simple functional reference
• Must be automated and rerun with

changes
– Often throughout lifecycle of design

Penn ESE5320 Fall 2023 -- DeHon 3

3

Goal

• Assure design works correctly
– Not fail and lose consumer confidence.

• …or lose them money, privacy, service
availability….

– Not kill anyone
• Ethical issue

– Not lose points on your grade !

Penn ESE5320 Fall 2023 -- DeHon 4

4

Challenge

• Designs are complex
– Many ways things can go wrong
– Many subtle ways things can go wrong
– Many tricky interactions

• Designs are often poorly specified
– Complex to completely specify

Penn ESE5320 Fall 2023 -- DeHon 5

5

Verification

• Often dominant cost in product
– Requires most manpower (cost)
– Takes up most of schedule

• In the critical path to making money

Penn ESE5320 Fall 2023 -- DeHon 6

6

2

Penn ESE5320 Fall 2023 -- DeHon 7
https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/

7

Penn ESE5320 Fall 2023 -- DeHon 8
https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/

8

Correctness?

• How do we define correctness for a
design?

• How do we know the design is correct?
• How do we know the design remains

correct when?
– Add a some feature
– Perform an optimization
– Fix a bug

Penn ESE5320 Fall 2023 -- DeHon 9

9

Life Cycle
• Design

– specify what means to be correct
• Development

– Implement and refine
– Fix bugs
– Optimize

• Operation and Maintenance
– Discover bugs, new uses and interaction
– Fix and provide updates

• Upgrade/revision
Penn ESE5320 Fall 2023 -- DeHon 10

10

Testing and Coverage

Penn ESE5320 Fall 2023 -- DeHon 11

11

Strawman Testing

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs
• Collect response outputs
• Check if outputs match expectations

Penn ESE5320 Fall 2023 -- DeHon 12

12

3

Strawman: Inputs and Outputs

Validate the design by testing it:
• Create a set of test inputs

– How do we generate an adequate set of
inputs? (know if a set is adequate?)

• Apply test inputs
• Collect response outputs
• Check if outputs match expectations

– How do we know if outputs are correct?
Penn ESE5320 Fall 2023 -- DeHon 13

13

Try 1: Inputs and Outputs

• Create a set of test inputs
– How do we generate an adequate set of

inputs? (know if a set is adequate?)
• All possible inputs

• Check if outputs match expectations
– How do we know if outputs are correct?

• Manually identify correct output

Penn ESE5320 Fall 2023 -- DeHon 14

14

How many input cases?

Combinational:
• 10-input AND gate?
• Any N-input combinational function?

Penn ESE5320 Fall 2023 -- DeHon 15

15

Add Pipelining

• The output doesn’t correspond to the
input on a single cycle

• Need to think about inputs sequences to
output sequences

• How many input cases?

Penn ESE5320 Fall 2023 -- DeHon 16

16

Add Pipelining

• The output doesn’t correspond to the
input on a single cycle

• Need to think about inputs sequences to
output sequences

• How many input cases for a generic
acyclic circuit?
– Depth d
– Inputs N
– Simple case: just clock in inputs over d

Penn ESE5320 Fall 2023 -- DeHon 17

17

Add Feedback State

• When have state
– Different inputs can produce different

outputs
• Behavior depends on state
• Need to reason about all states the

design can be in

Penn ESE5320 Fall 2023 -- DeHon 18

18

4

How many input cases?

• Function of 8b input
• Update of 32b checksum when given

new 8b of input
– Static int current; // internal state
– Void CKSUM32(unsigned char input)
 {current=CKSUM(current,input);}
 Void CKSUM32reset()
 {current=0;}

Penn ESE5320 Fall 2023 -- DeHon 19

19

How many input cases?

• Function of 8b input
• Update of 32b checksum when given

new 8b of input
– Void CKSUM32(unsigned char input)
 {current=CKSUM(current,input);}

• If only have access to input,
– How long a sequence to get current into a

potential value?
Penn ESE5320 Fall 2023 -- DeHon 20

20

Observation

• Cannot afford
– Exhaustively generate input cases
– Manual write output expectations

• Will need to be smarter about test case
selection

Penn ESE5320 Fall 2023 -- DeHon 21

21

Structural Simplifications

• How many cases if treat as 7-input
function?

• How many useful cases
– If hold s at 0?
– If hold s at 1?
– Together total cases?

Penn ESE5320 Fall 2023 -- DeHon 22

1

0

s

22

Useful Test Cases

int fun(int s,a,b,c,d) {
 if (s>20)
 if (s>100)
 return(a+b); else return(b+c);
 else
 if (s<0)
 return(c+d); else return(a+d);
}Penn ESE5320 Fall 2023 -- DeHon 23

What values of s
 will be interesting?
--- likely to exhibit different
 behavior?

When s=10,
 what values of a, b, c, d
 interesting? – likely to help
 verify/debug?

23

Finite State Machine
• Logic depends on state

– May have different logic in every state
– May transition to different states based on state

and input
int state;
while (true) {
 switch (state) {
 case (ST1): out=1; state=ST2; break;
 case (ST2): if (in>0) {out=2; state=ST3;}
 else {out=0; state=ST2;} break;
 case (ST3): ….

Penn ESE5320 Fall 2023 -- DeHon 24

24

5

Finite State Machine

• What input cases should we try to exercise for
an FSM? (goal for test cases)

int state;
while (true) {
 switch (state) {
 case (ST1): out=1; state=ST2; break;
 case (ST2): if (in>0) {out=2; state=ST3;}
 else {out=0; state=ST2;} break;
 case (ST3): ….

Penn ESE5320 Fall 2023 -- DeHon 25

25

Coverage

• Do our tests execute every line of code?
– What percentage of the code is exercised?

• Gate-level designs
– Can we toggle every gate output?

• Necessary but not sufficient
– Not exercised or not toggled, definitely not

testing some functionality
• Remember: If you don’t test it, it doesn’t work.

• Measurable
Penn ESE5320 Fall 2023 -- DeHon 26

26

So far…

• Identifying test stimulus important and
tricky
– Cannot generally afford exhaustive
– Need understand/exploit structure

• Coverage metrics a start
– Not complete answer

Penn ESE5320 Fall 2023 -- DeHon 27

27

Reference Specification
(Golden Model)

Part 2

Penn ESE5320 Fall 2023 -- DeHon 28

28

Strawman: Inputs and Outputs

Validate the design by testing it:
• Create a set of test inputs

– How do we generate an adequate set of
inputs? (know if a set is adequate?)

• Apply test inputs
• Collect response outputs
• Check if outputs match expectations

– How do we know if outputs are correct?
Penn ESE5320 Fall 2023 -- DeHon 29

29

Problem

• Manually writing down results for all
input cases
– Tedious
– Error prone
– …simply not viable for large number cases

need to cover
• Definitely not viable exhaustive
• …and still not viable when select intelligently

Penn ESE5320 Fall 2023 -- DeHon 30

30

6

Specification Model

• Ideally, have a function that can
– compute the correct output
– for any input sequence

• ``Gold Standard” – an oracle
– Whatever the function says is truth

• Could be another program
– Written in a different language? Same

language?
Penn ESE5320 Fall 2023 -- DeHon 31

31

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match

Penn ESE5320 Fall 2023 -- DeHon 32

32

Test against Specification

• Relieved ourselves of writing outputs
• Still have to select input cases

– Can freely use larger set since not
responsible for manually generating output
match

Penn ESE5320 Fall 2023 -- DeHon 33

33

Random Inputs
• Can use random inputs

– Since can generate expected output for
any case

• Use coverage metric to see how well
random inputs are exercising the code

• Can be particularly good to identify
interactions and corner cases didn’t
think of manually

• Still unlikely to generate very obscure
cases

Penn ESE5320 Fall 2023 -- DeHon 34

34

Random inputs

Combinational:
Expected number inputs
to cause output to toggle?
• 10-input AND gate?

Penn ESE5320 Fall 2023 -- DeHon 35

35

Random inputs

Combinational:
Expected number inputs
to cause output to toggle?
• 10-input AND gate?

Penn ESE5320 Fall 2023 -- DeHon 36

P(need more than m) = ((2N-1)/2N)m
0.5 = (1023/1024)m
m~=709

0

1

0

1

0

1

0

1

0

1

0

1

36

7

Random inputs

Combinational:
Want high probability of toggle?

Penn ESE5320 Fall 2023 -- DeHon 37

P(need more than m) = ((2N-1)/2N)m
Ptoggle = (1023/1024)m 0

1

0

1

0

1

0

1

0

1

0

1

37

Random Inputs
• Expected number of tests to toggle

output?
– Compare exhaustive

Penn ESE5320 Fall 2023 -- DeHon 38

1

0

38

Random Inputs
• Expected number of tests to toggle output?

– Compare exhaustive
• P(AND4 1)=1/16
• P(xor has 1)=1/2
• P(AND3 1)=1/8

• P(get 1) = (1/16)*(1/2)+(15/16)*(1/8)~=0.15
– 4 or 5 likely to generate a toggle

Penn ESE5320 Fall 2023 -- DeHon 39

1

0

39

Random Inputs
• Expected number of tests to toggle output?

– Compare exhaustive
• P(get 1) = (1/16)*(1/2)+(15/16)*(1/8)~=0.15

– 4 or 5 likely to generate a toggle
• Still not guarantee test

both
– More to guarantee

propagate toggle form xor3 and and3

Penn ESE5320 Fall 2023 -- DeHon 40

1

0

40

Observation

• In many cases, random can find
interesting cases quickly
– Maybe not minimum, but small compared

to exhaustive
• Some cases may be as bad as

exhaustive
• Coverage metrics give us

hints/guidance of which is which
Penn ESE5320 Fall 2023 -- DeHon 41

41

Random Testing
• Completely random may be just as bad

as exhaustive
– Expected time to exercise interesting piece

of code
– Expected time to produce a legal input

• E.g. – random packets will almost always have
erroneous checksums

– E.g. random bytes won’t generate
duplicate chunks, or much opportunity for
LZW compression

Penn ESE5320 Fall 2023 -- DeHon 42

42

8

Semi-Random

• How could we generate more useful but
“randomized” inputs?
– Focus on things we need to exercise

Penn ESE5320 Fall 2023 -- DeHon 43

43

Biased Random
• Non-uniform random generation of

inputs
– Compute checksums correctly most of the

time
• Control rate and distribution of checksum errors

• Randomize properties of input:
– What are some properties we might want

to vary for our compression/deduplication?

Penn ESE5320 Fall 2023 -- DeHon 44

44

Biased Random
• Non-uniform random generation of

inputs
– Compute checksums correctly most of the

time
• Control rate and distribution of checksum errors

• Randomize properties of input, E.g.
– Lengths of repeated sequences
– Distance between repeated sequences
– Edit sequence applied to differentiate files

Penn ESE5320 Fall 2023 -- DeHon 45

45

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match

Penn ESE5320 Fall 2023 -- DeHon 46

46

Specification

• Where would we get a reference
specification?
– and why should we trust it?

– Isn’t this just another design that can be
equally buggy?

Penn ESE5320 Fall 2023 -- DeHon 47

47

Standard

• Many standards includes a reference
implementation.

Penn ESE5320 Fall 2023 -- DeHon 48

48

9

Existing Product

• Many times there’s an existing product
or open-source implementation…

Penn ESE5320 Fall 2023 -- DeHon 49

49

Develop Specification

• Maybe develop a simple, functional
implementation as part of early design

Penn ESE5320 Fall 2023 -- DeHon 50

50

Specification Correct?

• How would we know the specification is
correct? -- why should we trust it?
– Simpler/smaller

• Less opportunity for bugs
• Written for function/clarity not performance

– Different
• Ok as long as reference and implementation

don’t have same bugs
– Debug and test them against each other

Penn ESE5320 Fall 2023 -- DeHon 51

51

Common Bugs
• Combinational (for simplicity)
• 5 input function, single output
• Assume two specifications have 1%

error rate (1% of input cases wrong)
• Assume independent

– (key assumption – weaker to extent wrong)
• Probability of both giving same wrong

result?
– For a particular input case?
– Across all input cases?

Penn ESE5320 Fall 2023 -- DeHon 52

52

Common Bugs

• Assuming Random, Independent errors
• P(not catch) = P1(bug)*P2(bug)
• P(not catch across all)

 ~= cases*P(not catch)
• Better:

P(not catch across all) =
 1-(1-P(not catch))cases

Penn ESE5320 Fall 2023 -- DeHon 53

53

Window Filter
• Compute based on neighbors
• for (y=0;y<YMAX;y++)

 for (x=0;x<XMAX;x++)
 o[y][x]=F(d[y-1][x-1],d[y-1][x],d[y-1][x+1],

 d[y][x-1],d[y][x],d[y][x+1],
 d[y+1][x-1],d[y+1][x],d[y+1][x+1]);

Penn ESE5320 Fall 2023 -- DeHon 54

Day 13

54

10

Window Filter
• Single read and write from dym, dy
• for (y=0;y<YMAX;y++)

 for (x=0;x<XMAX;x++) {
 dypxm=dypx; dypx=dnew; dnew=d[y+1][x+1];
 dyxm=dyx; dyx=dyxp; dyxp=dy[x+1];
 dymxm=dymx; dymx=dymxp; dymxp=dym[x+1];
 o[y][x]=F(dymxm,dymx,dymxp,

 dyxm,dyx,dyxp,
 dypxm,dypx,dnew);

 dym[x-1]=dyxm;dy[x-1]=dypxm; }
Penn ESE5320 Fall 2023 -- DeHon 55

Day 13

55

Simpler Functional

• Other examples of functional
specification being simpler than
implementation?

Penn ESE5320 Fall 2023 -- DeHon 56

56

Simpler Functional

• Sequential vs. parallel
• Unpipelined vs. pipelined
• Simple algorithm

– Brute force?
• No data movement optimizations
• Use robust, mature (well-tested)

building blocks

Penn ESE5320 Fall 2023 -- DeHon 57

57

Testing with Reference
Specification

Validate the design by testing it:
• Create a set of test inputs
• Apply test inputs

– To implementation under test
– To reference specification

• Collect response outputs
• Check if outputs match
Refine inputs based on coverage metrics

Penn ESE5320 Fall 2023 -- DeHon 58

58

Coverage

• Of specification or implementation?
– Almost certainly both

• Specification may have a case split that
implementation doesn’t have
– E.g. handle exceptional case

• Implementation typically have many
more cases to handle in general

Penn ESE5320 Fall 2023 -- DeHon 59

59

Automation and Regression

Penn ESE5320 Fall 2023 -- DeHon 60

Part 3

60

11

Automated

• Testing suite must be automated
– Single script or make build to run
– Just start the script
– Runs through all testing and comparison

without manual interaction
– Including scoring and reporting a single

pass/fail result
• Maybe a count of failing cases

Penn ESE5320 Fall 2023 -- DeHon 61

61

Regression Test

• Regression Test -- Suite of tests to run
and validate functionality

• To identify if your implementation has
“regressed” – returned to a previously
buggy state

Penn ESE5320 Fall 2023 -- DeHon 62

62

Regression Tests

• One big test or many small tests?
• Benefit of many small tests?
• Benefit of big test(s)?

Penn ESE5320 Fall 2023 -- DeHon 63

63

Automation Mandatory

• Will run regression suite repeatedly
during Life Cycle
– Every change
– As optimize
– Every bug fix

Penn ESE5320 Fall 2023 -- DeHon 64

64

Life Cycle
• Design

– specify what means to be correct
• Development

– Implement and refine
– Fix bugs
– optimize

• Operation and Maintenance
– Discover bugs, new uses and interaction
– Fix and provide updates

• Upgrade/revision
Penn ESE5320 Fall 2023 -- DeHon 65

65

Automation Value
• Engineer time is bottleneck

– Expensive, limited resource
– Esp. the engineer(s) that understand what the

design should do
• Cannot spend that time evaluating/running

tests
• Reserve it for debug, design, creating tests
• Capture knowledge in tools and tests

Penn ESE5320 Fall 2023 -- DeHon 66

66

12

When find a bug

• If regression suite didn’t originally find it
– Add a test (expand regression suite) so will

have a test to cover
• Make sure won’t miss it again
• Test suite monotonically improving

Penn ESE5320 Fall 2023 -- DeHon 67

67

When add a feature

• Add a test to validate that feature
– And interaction with existing functionality

• Maybe add the test first…
– See test identifies lack of feature before

add functionality
– …then see (correctly added) feature

satisfies test
Penn ESE5320 Fall 2023 -- DeHon 68

68

Continuous Integration

• When commit code to shared repo (git, svn)
– Build and run regression suite
– Perhaps before allow commit
– Guarantee not break good version

• Or, at least, know how functional/broken the current
version is

• Alternately (complement), nightly regression
– Automation to check out, build, run tests

Penn ESE5320 Fall 2023 -- DeHon 69

69

Regression Test Size
• Want to be comprehensive

– More tests better….
• Want to run in tractable time

– Few minutes once make change or when
checkin

– Cannot run for weeks or months
– Might want to at least run overnight

• Sometimes forced to subset
– Small, focused subset for immediate test
– Comprehensive test for full validation

Penn ESE5320 Fall 2023 -- DeHon 70

70

Unit Tests
• Regression for individual components
• Good to validate independently
• Lower complexity

– Fewer tests
– Complete quickly

• Make sure component(s) working
before run top-level design tests
– One strategy for long top-level regression

Penn ESE5320 Fall 2023 -- DeHon 71

1

0

71

Functional Scaffolding
• If functional decomposed into

components like implementation
• Replace individual components with

implementation
– Use reference/functional spec for rest

Penn ESE5320 Fall 2023 -- DeHon 72

A B C

A B C

A B C

72

13

Functional Scaffolding
• If functional decomposed into

components like implementation
• Replace individual components with

implementation
– Use reference/functional spec for rest

• Independent test of integration for that
module

Penn ESE5320 Fall 2023 -- DeHon 73

A B C

73

Functional Scaffolding
• If functional decomposed into

components like implementation
• Run reference component and

implementation together and check
outputs

Penn ESE5320 Fall 2023 -- DeHon 74

A B C

B =

copy copy

Summarize
Mismatches

74

Decompose Specification
• Should specification decompose like

implementation?
– ultimate golden reference

• Only if that decomposition is simplest

• But, worth refining
– Golden reference simplest
– Intermediate functional decomposed

• Validate it versus golden
• Still simpler than final implementation
• Then use with implementationPenn ESE5320 Fall 2023 -- DeHon 75

75

Penn ESE5320 Fall 2023 -- DeHon 76

Big Ideas

• Testing
– Designs are complicated, need extensive

validation – If you don’t test it, it doesn’t work.
– Exhaustive testing not tractable
– Demands care
– Coverage one tool for helping identify

• Reference specification as “gold” standard
– Simple, functional

• Must automate regression
– Use regularly throughout life cycle

76

Penn ESE5320 Fall 2023 -- DeHon 77

Admin
• Feedback
• P2 due Friday
• P3 out
• Next Week …

77

