
ESE5320 Fall 2023

University of Pennsylvania
Department of Electrical and System Engineering

System-on-a-Chip Architecture

ESE5320, Fall 2023 Midterm Wednesday, October 11

• Exam ends at 11:45am; begin as instructed (target 10:15am)
Do not open exam until instructed.

• Problems weighted as shown.

• Calculators allowed.

• Closed book = No text or notes allowed.

• Show work for partial credit consideration. All answers here.

• Unless otherwise noted, answers to two significant figures are sufficient.

• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name:

1 2a 2b 3 4 5 6 7 8 Total

10 5 5 10 10 20 10 10 20 100

1

ESE5320 Fall 2023

Consider the following (very simplified) code to perform Deep Neural Network (DNN) Clas-
sification on a stream of matrix inputs.
Boundary conditions omitted for simplicity.)

#define DIM1 1024

#define WINDOW 64

#define STEP (WINDOW/2)

#define DIM2 (DIM1/STEP)

#define DIM3 (DIM2*DIM2)

#define STAGES 10

#define NORMALIZE 16

#define THRESH (1<<(NORMALIZE+1))

#include <stdint.h>

#include <stdlib.h>

#include <stdbool.h>

uint16_t in[DIM1][DIM1];

uint32_t mout[DIM1][DIM1];

uint16_t s2[DIM1][DIM1];

uint32_t cout[DIM2][DIM2];

uint16_t sinput[STAGES][DIM3];

uint32_t snorm[STAGES][DIM3];

uint16_t cm[DIM1][DIM1];

uint16_t cc[WINDOW][WINDOW];

uint16_t cweights[STAGES][DIM3][DIM3];

// static assignment to weights not shown for bevity

// assume these stream data in and out at the streaming rate

// as data is available

void read_input(uint16_t input[DIM1][DIM1]);

void write_output(uint16_t sout[STAGES][DIM3], uint16_t s);

void mvmpy(uint16_t a[STAGES][DIM3], uint16_t c[STAGES][DIM3][DIM3],

 uint16_t s, uint32_t o[STAGES][DIM3]) {

 for (int i=0;i<DIM3;i++) { // loop A

 o[s][i]=0;

 for (int x=0;x<DIM3;x++) // loop B

 o[s][i]+=a[s-1][x]*c[s][i][x];

 }

}

2

ESE5320 Fall 2023

void conv2digest(uint16_t a[DIM1][DIM1], uint16_t w[WINDOW][WINDOW],

 uint32_t o[DIM2][DIM2]) {

 for (int y=0;y<DIM2;y++) // loop C

 for (int x=0;x<DIM2;x++) // loop D

 {

 o[y][x]=0;

 for (int wy=0;wy<WINDOW;wy++) // loop E

 for (int wx=0;wx<WINDOW;wx++) // loop F

 o[y][x]+=a[y*STEP+wy][x*STEP+wx]*w[wy][wx];

 }

}

void mmmpy(uint16_t a[DIM1][DIM1], uint16_t b[DIM1][DIM1],

 uint32_t o[DIM1][DIM1]) {

 for (int y=0;y<DIM1;y++) // loop G

 for (int x=0;x<DIM1;x++) { // loop H

 o[y][x]=0;

 for (int k=0;k<DIM1;k++) // loop I

 o[y][x]+=a[y][k]*b[k][x];

 }

}

void nlmap2d (uint32_t i[DIM1][DIM1], uint16_t o[DIM1][DIM1]) {

 for (int y=0;y<DIM1;y++) // loop J

 for (int x=0;x<DIM1;x++) // look K

 if (i[y][x]<THRESH)

 o[y][x]=(i[y][x]>>NORMALIZE);

 else

 o[y][x]=0;

}

void nlmapflat (uint32_t i[DIM2][DIM2], uint16_t o[STAGES][DIM3], uint32_t s) {

 for (int y=0;y<DIM2;y++) // loop L

 for (int x=0;x<DIM2;x++) // loop M

 if (i[y][x]<THRESH)

 o[s][y*DIM2+x]=(i[y][x]>>NORMALIZE);

 else

 o[s][y*DIM2+x]=0;

}

void nlmap (uint32_t i[STAGES][DIM3], uint16_t o[STAGES][DIM3], uint32_t s) {

 for (int x=0;x<DIM3;x++) // loop N

 if (i[s][x]<THRESH)

 o[s][x]=(i[s][x]>>NORMALIZE);

 else

 o[s][x]=0;

}

int main(int argv, char **argc) {

 while (true) {

 read_input(in);

 mmmpy(in,cm,mout);

 nlmap2d(mout,s2);

 conv2digest(s2,cc,cout);

 nlmapflat(cout,sinput,0);

 for (int s=1;s<STAGES;s++) {

 mvmpy(sinput,cweights,s,snorm);

 nlmap(snorm,sinput,s);

 }

 write_output(sinput,(STAGES-1));

 }

}

3

ESE5320 Fall 2023

We start with a baseline, single processor system as shown.

32KB

P

local
scratchpad
memory

3
2

G
B

/s
256MB
Memory

• For simplicity throughout, we will treat non-memory indexing adds (subtracts count as
adds), compares, min, max, abs, divides, multiplies, shifts, and logical operations (bi-
nary and bitwise) as the only compute operations. We’ll assume the other operations
take negligible time or can be run in parallel (ILP) with the adds, multiplies, and mem-
ory operations. (Some consequences: You may ignore loop and conditional overheads
in processor runtime estimates; you may ignore computations in array indecies.)

• Baseline processor can execute one multiply, divide, compare, min, max, shift, abs, or
add per cycle and runs at 1 GHz.

• Data can be transfered from the 256 MB main memory at 32 GB/s when streamed in
chunks of at least 256B. Assume for loops that only copy data can be auto converted
into streaming operations.

• Non-streamed access to the main memory takes 10 cycles.
• Baseline processor has a local scratchpad memory that holds 32KB of data. Data can

be streamed into the local scratchpad memory at 32 GB/s. Non-streamed accesses to
the local scratchpad memory takes 1 cycle.

• By default, all arrays live in the main memory.
• Assume scalar (non-array) variables can live in registers.
• Assume all additions are associative.
• Assume comparisons, adds, min, max, divide and multiplies take 1 ns when imple-

mented in hardware accelerator, so fully pipelined accelerators also run at 1 GHz.

4

ESE5320 Fall 2023

1. Simple, Single Processor Resource Bounds

Give the single processor resource bound time for compute operations and memory
access for each function directly inside the main loop and the total bound for the while
loop in main.

loop Compute Memory

read input
mmmpy
nlmap2d

conv2digest
nlmapflat

mvmpy (all STAGES)
nlmap (all STAGES)

write output

main while

5

ESE5320 Fall 2023

2. Based on the simple, single processor mapping from Problem 1:

(a) What function is the bottleneck? Consider both compute and memory.
(circle one)

mmmpy
nlmap2d
conv2digest
mlmapflat
mvmpy (all STAGES)
nlmap (all STAGES)

(b) What is the Amdahl’s Law speedup if you only accelerate the identified function?
Consider both compute and memory.

6

ESE5320 Fall 2023

3. Parallelism in Loops

(a) Classify the following loops as data parallel or not? (loop bodies could be executed
concurrently)

(b) Explain why or why not?

Data

Loop Parallel? Why or why not?

A

B

C

E

F

G

H

I

J

K

7

ESE5320 Fall 2023

4. What is the critical path for mmmpy function?

8

ESE5320 Fall 2023

(This page intentionally left mostly blank for answers.)

9

ESE5320 Fall 2023

5. Revise the body of mmmpy to minimize the memory resource bound by exploiting the
scratchpad memory and streaming memory operations.

(a) Identify the array or arrays whose memory operations account for most of the
time in the loop.

(b) How would you rewrite mmmpy to use the scratchpad memory to reduce the time
required to access memory? (show code)
Hint: an order of magnitude reduction in memory time is possible, but may be
tricky. A little under 3× speedup is easier and will receive partial credit.

10

ESE5320 Fall 2023

(c) Account for total memory usage in the local scratchpad (use provided table).

Variable Size (Bytes)

(d) Estimate the new memory resource bound for your optimized mmmpy.

11

ESE5320 Fall 2023

6. Identify concurrency opportunities between loops.

Which functions can run concurrently, as separate processes, to increase the through-
put for the while loop in main. If they cannot, explain what prevents concurrency.
If they can, explain why and what conditions need to be met for the concurrency to
work.

Concurrent? How or Why not?

mmmpy + nlmap2d

nlmap2d + conv2digest

conv2digest + nlmapflat

nlmapflat + mvmpy

mvmpy + nlmap

12

ESE5320 Fall 2023

(This page intentionally left mostly blank for answers.)

13

ESE5320 Fall 2023

7. Consider building an accelerator for mmmpy. Target a throughput of completing one
iteration of loop I on each cycle.

• Assume we’ve pre-loaded the b (cm) matrix into a memory in the accelerator
before the application starts, and this memory is wide and can supply the b (cm)
data needed for one iteration of loop I on each cycle.

• Assume a (in) data is streamed in from read input at the streaming memory
rate.

(a) What compute operations must be performed in parallel on every cycle to com-
plete loop I? (give number and type as well as computation being performed)

(b) What needs to be read from the local b memory on every cycle?

(c) How do we need to handle the a input stream to support this rate of operation?

i. Describe why the a input streaming rate is adequate to maintain the through-
put required by this accelerator.

ii. How can the input reception be treated to overlap the collection of input data
with the computation?

14

ESE5320 Fall 2023

(d) How can this accelerator be extended to also include the nlmap2d computation
that follows it while maintaining the same throughput?

(e) Assuming this accelerator runs concurrently with the rest of the computation on
a processor, what is the new throughput for the while loop in the main function?
(how many cycles per iteration of the while loop?)

15

ESE5320 Fall 2023

8. Map the main while loop computation to a system composed of:

• four simple processors (1 GHz as previously outlined),
• two fast processors (2 GHz, with everything running 2× as fast except data trans-

fer from main memory),
• one vector processor that can perform 8 16b×16b multiplies or 8 32b adds on each

cycle as well as performing 8 vector loads of 16b or 32b data from its scratchpad,
and

• the accelerator from Problem 7.

Assume each processor has its own scratchpad and has a separate path to the large
memory so they can all simultaneously stream at full rate.1

(Hint: can you map the problem to match the throughput provided by the mmmpy

accelerator?)

(a) Describe how you would map the computation onto these heterogeneous com-
puting resources. Where is each computation run? What computations share
compute units?

loop Where Run Throughput

mmmpy
nlmap2d

conv2digest
nlmapflat

mvmpy
nlmap

write output

1Probably not realistic, but we’ll use to simplify this problem.

16

ESE5320 Fall 2023

(b) Describe how you would use the scratchpad memories as necessary beyond what
you’ve already answered in Problems 5 and 7 to achieve your target performance.
[no further change is a possible answer here.] (Hint: can you make sure the
throughput of each function is limited by computation or time streaming data
from memory?)

(c) Estimate the throughput your mapping achieves in cycles per main while loop
iteration.

17

ESE5320 Fall 2023

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone else’s ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on one’s resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for one’s own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

18

