ESE534: Computer Organization

Day 19: November 7, 2014
Interconnect 5: Meshes

Previously

• Saw
 – need to exploit locality/structure in interconnect
 – a mesh might be useful
 – Rent’s Rule as a way to characterize structure

Today

• Mesh:
 – Channel width bounds
 – Linear population
 – Switch requirements
 – Routability
 – Segmentation
 – Clusters

Mesh Street Analogy

Manhattan

Mesh

switchbox
Tree & Mesh
Each case A→B: Wire distance? Switches in Path?

Tree & Mesh
Each case C→D: Wire distance? Switches in Path?

Tree & Mesh
Some paths in tree where nodes physically close are not logically close.

Switch Delay
• Switching Delay:
 – Manhattan distance
 \[|X_i - X_j| + |Y_i - Y_j| \]
 – \(2 \sqrt{N_{\text{subarray}}} \)
 • worst case:
 \(N_{\text{subarray}} = N \)

Mesh Channels
• Lower Bound on \(w \)?
• Bisection Bandwidth
 – \(BW = N^p \)
 – channels in bisection \(\propto N^{0.5} \)

\[W \propto \frac{N^r}{\sqrt{N}} = N^{(p-0.5)} \]

Channel width grows with \(N \).

Straight-forward Switching Requirements
• Total Switches?
Total Switches

- Switches per switchbox:
 - \(4 \times (3w \times w)/2 = 6w^2\)
 - Bidirectional switches
 - \((N \rightarrow W\) same as \(W \rightarrow N)\)
 - double count

Total Switches

- Switches per switchbox:
 - \(6w^2\)
- Switches into network:
 - \((K+1)w\)
- Switches per PE:
 - \(6w^2 + (K+1)w\)
 - \(w = cN^{p-0.5}\)
 - Total \(\propto w^2 \times N^{2p} - 1\)
- Total Switches: \(N \times (Sw/PE) \propto N^{2p}\)

Routability?

- Asking if you can route in a given channel width is:
 - NP-complete
- Contrast with Beneš, Beneš-crossover tree….

Linear Population Switchbox

- Each entering channel connect to:
 - One channel on each remaining side (3)
 - 4 sides
 - \(W\) wires
 - Bidirectional switches
 - \((N \rightarrow W\) same as \(W \rightarrow N)\)
 - double count
 - \(3 \times 4 \times W/2 = 6W\) switches
 - vs. \(6w^2\) for full population
Total Switches

- Switches per switchbox: 6w
- Switches into network: (K+1)w
- Switches per PE: 6w + (K+1)w
 - w = cN^{p-0.5}
 - Total \(\propto N^{p-0.5} \)
- Total Switches: \(N \times (Sw/PE) \propto N^{p+0.5} > N \)

Total Switches (linear population)

- Total Switches \(\propto N^{p+0.5} \)
 - \(N < N^{p+0.5} < N^2 \)
- Switches grow faster than nodes
- Wires grow faster than switches

Checking Constants (Preclass 3)

When do linear population designs become wire dominated?

- Wire pitch = 4 F
- switch area = 600 F^2
- wire area: (4w)^2
- switch area: 6x600 w
- Crossover?

Checking Constants: Full Population

Does full population really use all the wire physical tracks?

- Wire pitch = 4F
- switch area = 600 F^2
- wire area: (4w)^2
- switch area: 6x600 w^2
- effective wire pitch: 60F
 - ~15 times pitch

Practical

- Full population is always switch dominated
 - doesn’t really use all the potential physical tracks
 - …even with only two metal layers
- Just showed:
 - would take 15\times Mapping Ratio for linear population to take same area as full population (once crossover to wire dominated)
- Can afford to not use some wires perfectly
 - to reduce switches (area)

Diamond Switch

- Typical linear switchbox pattern:
 - Used by Xilinx
Mapping Ratio?

- How bad is it?
- How much wider do channels have to be?
- Mapping Ratio:
 - detail channel width required / global ch width

Mapping Ratio

- Empirical:
 - Seems plausibly, constant in practice
- Theory/provable:
 - There is no Constant Mapping Ratio
 - At least detail/global
 - can be arbitrarily large!

Domain Structure

- Once enter network (choose color) can only switch within domain

Detail Routing as Coloring

- Global Route channel width = 2
- Detail Route channel width = N
 - Can make arbitrarily large difference

Routability

- Domain Routing is NP-Complete
 - can reduce coloring problem to domain selection
 - i.e. map adjacent nodes to same channel
 - Previous example shows basic shape
 - (another reason routers are slow)

Routing

- Lack of detail/global mapping ratio
 - Says detail can be arbitrarily worse than global
 - Doesn’t necessarily say domain routing is bad
 - Maybe can avoid this effect by changing global route path?
 - Says global not necessarily predict detail
 - Argument against decomposing mesh routing into global phase and detail phase
 - Modern FPGA routers do not
 - VLSI routers and earliest FPGA routers did
Buffering and Segmentation

Segmentation

• Allow wires to bypass switchboxes
 • Impact on delay?

Segmentation

• Segment of Length \(L_{\text{seg}} \)
 – 6 switches per switchbox visited
 – Only enters a switchbox every \(L_{\text{seg}} \)

 – \(\text{SW/sbox/track of length } L_{\text{seg}} = 6/L_{\text{seg}} \)

Segmentation

• Reduces switches on path \(\sqrt{N/L_{\text{seg}}} \)
• May get fragmentation
• Another cause of unusable wires
Segmentation: Corner Turn Option

- Can you corner turn in the middle of a segment?
- If can, need one more switch
- SW/sbox/track = 5/L_{seg} + 1

Buffered Switch Composition

Segment R and C

- What contributes to?
 - R_{seg}?
 - C_{seg}?

Delay of Segment

\[T_{seg} = T_{sw} + (L_{seg})^2 \times R_{seg} \times C_{seg} \]

Preclass 4

- Fillin Tseg table together.
Preclass 4

• What L_{seg} minimizes delay for:
 • Distance=1?
 • Distance=2?
 • Distance=8?
 • Distance=10?
 • Distance=19?

VPR $L_{seg}=4$ Pix

VPR $L_{seg}=4$ Route

Effect of Segment Length?
• Experiment with on HW9

Connection Boxes

C-Box Depopulation
• Not necessary for every input to connect to every channel
• Saw last time:
 – $K \times (N-K+1)$ switches
• Maybe use fewer?
IO Population

- Toronto Model
 - F_c fraction of tracks which an input connects to
- IOs spread over 4 sides
- Maybe show up on multiple
 - Shown here: 2

Clustering

- Recall cascaded LUTs
- Often group collection of LUTs into a Logic Block

Logic Block

What does clustering do for delay?

Delay versus Cluster Size

[Lu et al., FPGA 2009]
Area versus Cluster Size

Review: Mesh Design Parameters

- Cluster Size
 - Internal organization
- LB IO (Fc, sides)
- Switchbox Population and Topology
- Segment length distribution
 - and staggering
- Switch rebuffering

Big Ideas

- Mesh natural 2D topology
 - Channels grow as $\Omega(N^{0.5})$
 - Wiring grows as $\Omega(N^{p^2})$
 - Fully exploit 2D locality
 - Linear Population:
 - Switches grow as $\Omega(N^{p+0.5})$
 - Worse than shown for hierarchical
 - Unbounded global\(\rightarrow\)detail mapping ratio
 - Detail routing \(NP\)-complete
 - But, seems to work well in practice…

Admin

- HW7 graded
- HW8 due Wednesday
- HW9 out
- Reading for Wednesday on web