Previously

• Used Rent's Rule characterization to understand wire growth
 \[IO = c N^p \]

 • Top bisections will be \(\Omega(N^p) \)
 • 2D wiring area
 \[\Omega(N^p) \times \Omega(N^p) = \Omega(N^{2p}) \]

We Know

• How we avoid \(O(N^2) \) wire growth for “typical” designs
• How to characterize locality
• How we might exploit that locality to reduce wire growth
• Wire growth implied by a characterized design

Today

• Switching
 – Implications
 – Options

Observation

• Locality that saved us wiring, also saves us switching
 \[IO = c N^p \]
Consider

- Crossbar case to exploit wiring:
 - split into two halves, connect with limited wires
 - $N/2 \times N/2$ crossbar each half
 - $N/2 \times (N/2)^p$ connect to bisection wires
 - $2(N^2/4) + 2(N/2)^{p+1} < N^2$

Recurse

- Repeat at each level
 - form tree

Result

- If use crossbar at each tree node
 - $O(N^{2p})$ wiring area
 - for $p>0.5$, direct from bisection
 - $O(N^{2p})$ switches
 - top switch box is $O(N^{2p})$
 - $2 \cdot W_{top} \times W_{bot} + (W_{bot})^2$
 - $2 \cdot (N^p \times (N/2)^p + (N/2)^{2p})$
 - $N^{2p}(1/2^p + 1/2^{2p})$
 - switches at one level down is
 - $2(1-2^p) \times$ previous level
 - coefficient < 1 for $p>0.5$

Result

- If use crossbar at each tree node
 - $O(N^{2p})$ wiring area
 - for $p>0.5$, direct from bisection
 - $O(N^{2p})$ switches
 - top switch box is $O(N^{2p})$
 - $N^{2p}(1/2^p + 1/2^{2p})$
 - switches at one level down is
 - $2 \times (N/2)^{2p}(1/2^p + 1/2^{2p})$
 - $2 \times (1/2^{p})^2 \times (N^{2p}(1/2^p + 1/2^{2p}))$
 - $2 \times (1/2^{p})^2 \times$ previous level
 - Total switches:
 - $N^{2p} \times (1 + 2^{1-2p} + 2^{2(1-2p)} + 2^{3(1-2p)} + \ldots)$
 - get geometric series; sums to $O(1)$
 - $N^{2p} \times ((1 - 2^{1-2p})^{-1})$
 - $= 2(2p^{-1})/(2(2p^{-1}) - 1) \times N^{2p}$
Good News

- Good news
 - asymptotically optimal
 - Even without switches, area $O(N^{2p})$
 - so adding $O(N^{2p})$ switches not change

Bad News

- Switches area >> wire crossing area
 - Consider 8λ wire pitch \Rightarrow crossing $64\lambda^2$
 - Typical (passive) switch \Rightarrow $2500\lambda^2$
 - Passive only: $40\times$ area difference
 - worse once rebuffer or latch signals.
 - and switches limited to substrate
 - whereas can use additional metal layers for wiring area

Additional Structure

- This motivates us to look beyond crossbars
 - can depopulate crossbars on up-down connection without loss of functionality?

Can we do better?

- Crossbar too powerful?
 - Does the specific down channel matter?
- What do we want to do?
 - Connect to any channel on lower level
 - Choose a subset of wires from upper level
 - order not important

N choose K

- Exploit freedom to depopulate switchbox
- Can do with:
 - $K \times (N-K+1)$ switches
 - $Vs. \ K \times N$
 - Save $\sim K^2$

N-choose-M

- Up-down connections
 - only require concentration
 - choose M things out of N
 - i.e. order of subset irrelevant.
 - Consequent:
 - can save a constant factor $\sim 2^p/(2^p-1)$
 - $(N/2)^p \times N^p \ vs \ (N^p - (N/2)^p+1)(N/2)^p$
 - $p=2/3 \Rightarrow 2^{2p}/(2^p-1) \approx 2.7$
 - Similary, Left-Right
 - order not important \Rightarrow reduces switches
Multistage Switching

- We can route any permutation w/ less switches than a crossbar
- If we allow switching in stages
 - Trade increase in switches in path
 - For decrease in total switches

Butterfly

- Log stages
- Resolve one bit per stage

What can a Butterfly Route?

- 0000 → 0001
- 1000 → 0010

Butterfly Routing

- Cannot route all permutations
 - Get internal blocking

What required for non-blocking network?
Decomposition

- Pick a link to route.
- Route to destination over red network
- At destination,
 - What can we say about the link which shares the final stage switch with this one?
 - What can we do with this link?
- Route that link
 - What constraint does this impose?
 - So what do we do?

Decomposed Routing

Switches: $N/2 \times 2 \times 4 + (N/2)^2 < N^2$

Recurse

If it works once, try it again…

Result: Beneš Network

- $2\log_2(N)$ stages (switches in path)
- Made of $N/2$ 2x2 switchpoints
 - (4 switches)
- $4N \times \log_2(N)$ total switches
- Compute route in $O(N \log(N))$ time

Beneš Network Wiring

- Bisection: N
- Wiring $\Rightarrow O(N^2)$ area (fixed wire layers)
Beneš Switching

• Beneš reduced switches
 – N^2 to $N\log(N)$
 – using multistage network
• Replace crossbars in tree with Beneš switching networks

Beneš Switching

• Implication of Beneš Switching
 – still require $O(W^2)$ wiring per tree node
 • or a total of $O(N^2p)$ wiring
 – now $O(W \log(W))$ switches per tree node
 • converges to $O(N)$ total switches!
 – $O(\log^2(N))$ switches in path across network
 • strictly speaking, dominated by wire delay ~$O(N^p)$
 • but constants make of little practical interest except for very large networks 😊

Better yet…

• Believe do not need Beneš on the up paths
• Single switch on up path
• Beneš for crossover
• Switches in path:
 - $\log(N)$ up
 - $\log(N)$ down
 - $2\log(N)$ crossover
 - Total switches: $4\log(N)$
 - $O(\log(N))$

Linear Switch Population

• Can further reduce switches
 – connect each lower channel to $O(1)$ channels in each tree node
 – end up with $O(W)$ switches per tree node

Linear Switch Population

• Linear Switch (p=0.5)
Linear Population and Beneš

- Top-level crossover of $p=1$ is Beneš switching

Beneš Compare

- Can permute stage switches so local shuffles on outside and big shuffle in middle

Linear Consequences: Good News

- Linear Switches
 - $O(\log(N))$ switches in path
 - $O(N^{2p})$ wire area
 - $O(N)$ switches
 - More practical than Beneš crossover case

Linear Consequences: Bad News

- Lacks guarantee can use all wires
 - as shown, at least mapping ratio > 1
 - likely cases where even constant not suffice
 - expect no worse than logarithmic
- Finding Routes is harder
 - no longer linear time, deterministic
 - open as to exactly how hard

Mapping Ratio

- Mapping ratio says
 - if I have W channels
 - may only be able to use W/MR wires
 - for a particular design's connection pattern
 - to accommodate any design
 - for all channels
 - physical wires $\geq MR \times$ logical
- Example:
 - Shows MR=3/2
 - For Linear Population, 1:1 switchbox
Area Comparison

Both:
p = 0.67
N = 1024

M-choose-N
perfect map
Linear
MR = 2

Area Comparison

• Since
 – switch >> wire
• may be able to
tolerate MR > 1
• reduces switches
 – net area savings
• Empirical:
 – Never seen greater than 1.5

Expander Theory

\((\alpha, \beta)\)-expansion
– Any group of size \(k = \alpha N\) will expand
 connect to a group of size \(\beta k = \beta \alpha N\) in each
 logical direction

[Arora, Leighton, Maggs
SIAM Journal of Comp. v25n3p600 1996]

Expander Idea

• IF we can achieve expansion
 – Can guarantee non-blocking at each stage
• i.e.
 – Guarantee use less than \(\alpha N\)
 – Guarantee connections to more stuff in
 next level
 – Since \(\beta \alpha N > \alpha N\) available in next level
 • Guaranteed to be an available switch

Dilated Switches

• Have multiple outputs per logical
direction
 – Dilation: number of outputs per direction
 – E.g. radix 2 switch w/ 4 outputs
 • 2 per direction
 • Dilation 2

Up (0)
Down (1)
Dilated Switches allow Expansion

- On Right
 - Any pair of nodes connects to 3 switches
- Strictly speaking must have $d>2$ for expansion

Random Wiring

- Random, dilated wiring for butterfly can achieve

$$d > \beta + 1 + \frac{\beta + 1 + \ln 2\beta}{\ln \left(\frac{2\beta}{\beta + 1}\right)}$$

$$2d > 2\beta + 1 + \frac{2\beta + 1 + \ln 2\beta}{\ln \left(\frac{2\beta}{\beta + 1}\right)}$$

- For tree... $2 \rightarrow 2^p$ (?)

Constraints

- Total load should not exceed α of net
 - $L = \text{mapping ratio} (\text{light loading factor})$
 - $\alpha LW = \text{number into each subtree}$
 - $L \geq 1/(2\alpha)$
- Cannot expand past the size of subtree
 - $\beta \leq N/2^p$
 - $\beta \alpha \leq \frac{W}{2^p}$

Extra Switches

- Extra switch factor: $d \geq L$
- Try:
 - $\beta = 2, \alpha = 1/10$
 - $d = 8$
 - $dL = 40$ (p=1)
- Try:
 - $\beta = 1.01, \alpha = 1/4, d = 6, L = 2$ $dL = 40$ (p=1)
 - $\beta = 1.01, \alpha = 1/4, d = 6, L = 2.8$ $dL = 40$ (p=0.5)

Putting it Together

- Base, linear-population trees have $O(N)$ switches
- Make larger by a factor of L (linear factor)
- Dilated version have a factor of d more switches
- Randomly wired expander
 - Can have $O(N)$ switches
 - Guarantee routes
 - Constants < 100 (looks like < 20)
 - Open: how tight can make it?

Big Ideas

- In addition to wires, must have switches
 - Have significant area and delay
- Rent’s Rule locality reduces
 - both wiring and switching requirements
- Naïve switches match wires at $O(N^{2p})$
 - switch area $>>$ wire area
 - prevent benefit from multiple layers of metal
Big Ideas
[MSB Ideas]

• Can achieve O(N) switches
 – plausibly O(N) area with sufficient metal layers
• Switchbox depopulation
 – save considerably on area (delay)
 – will waste wires
 – May still come out ahead (evidence to date)