ESE680-002 (ESE534): Computer Organization

Interconnect 7: Time Multiplexed Interconnect

Previously

- Multicontext computation
- Interconnect Topology
- Configured Interconnect
 - Lock down route between source and sink

Today

- Interconnect Style
 - Static Time Multiplexed
 - Dynamic Packet Switched
- Online/local vs. Offline/global

Motivation

- Holding a physical interconnect link for a logic path may be wasteful
 - Data Rate Logical Link < Physical Link
- E.g.
 - Time multiplexed logic
 - Logic only appears one cycle
 - Multirate
 - Some data may come at lower rates
- Data dependent communication
 - Only need to send fraction of time

Issues/Axes

- Throughput of Communication relative to data rate of media
 - Single point-to-point link consume media BW?
 - Can share links between multiple comm streams?
 - What is the sharing factor?
- Binding time/Predictability of Interconnect
 - Pre-fab
 - Before communication then use for long time
 - Cycle-by-cycle
- Network latency vs. persistence of communication
 - Comm link persistence

Axes

- Share factor (Media Rate/App. Rate)
- Predictability
- Persistence
- Net Latency
Hardwired

- Direct, fixed wire between two points
- *E.g.* Conventional gate-array, std. cell
- Efficient when:
 - know communication *a priori*
 - fixed or limited function systems
 - high load of fixed communication
 - often control in general-purpose systems
 - links carry high throughput traffic continually between fixed points

Configurable

- Offline, lock down persistent route.
- *E.g.* FPGAs
- Efficient when:
 - link carries high throughput traffic
 - (loaded usefully near capacity)
 - traffic patterns change
 - on timescale >> data transmission

Axes

<table>
<thead>
<tr>
<th>Sharefactor (Media Rate/App. Rate)</th>
<th>Persistence</th>
<th>Net Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time-Switched

- Statically scheduled, wire/switch sharing
- *E.g.* TDMA, NuMesh, TSFPGA
- Efficient when:
 - thruput per channel < thruput capacity of wires and switches
 - traffic patterns change
 - on timescale >> data transmission

Self-Route, Circuit-Switched

- Dynamic arbitration/allocation, lock down routes
- *E.g.* METRO/RN1, old telephone net
- Efficient when:
 - instantaneous communication bandwidth is high (consume channel)
 - lifetime of comm. > delay through network
 - communication pattern unpredictable
 - rapid connection setup important
Left Page

Axes

- Sharefactor (Media Rate/App. Rate)
- Persistence
- Circuit Switch

Net Latency

Right Page

Self-Route, Store-and-Forward, Packet Switched

- Dynamic arbitration, packetized data
- Get entire packet before sending to next node
- E.g. nCube, early Internet routers
- Efficient when:
 - lifetime of comm < delay through net
 - communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - packets small

Store-and-Forward

- Dynamic arbitration, packetized data
- Start forwarding to next node as soon as have header
- Don’t pay full latency of storing packet
- Keep space to buffer entire packet if necessary
- Efficient when:
 - lifetime of comm < delay through net
 - communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - packets small

Virtual Cut Through

- Dynamic arbitration, packetized data
- E.g. Caltech MRC, Modern Internet Routers
- Efficient when:
 - lifetime of comm < delay through net
 - communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - message > buffer length
 - allow variable (? Long) sized messages

Self-Route, Wormhole Packet-Switched

- Dynamic arbitration, packetized data
- E.g. Caltech MRC, Modern Internet Routers
- Efficient when:
 - lifetime of comm < delay through net
 - communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - message > buffer length
 - allow variable (? Long) sized messages
Wormhole

Single Packet spread through net when not stalled

Wormhole

Single Packet spread through net when stalled.

Axes

Sharefactor (Media Rate/App. Rate)

Packet Switch

Time Mux

Persistence

Configurable

Predictability

Phone; Videoconf; Cable

Circuit Switch

Packet Switch

IP Packet SMS message

Net Latency

Intuitive Tradeoff (TM)

• Benefit of Time-Multiplexing?
 – Minimum end-to-end latency
 – No added decision latency at runtime
 – Offline route → high quality route
 • use wires efficiently
• Cost of Time-Multiplexing?
 – Route task must be static
 • Cannot exploit low activity
 – Need memory bit per switch per time step
 • Need large number of time steps...

Time-Multiplexed (TM)

• Message paths are computed offline prior to execution
 – Based on a workload specified already
 + Quality of route potentially better due to global view during routing
 – Need to store routing decisions in memory in hardware
 + Faster, simpler switches
 – Need to spend time computing routes offline
 – Need to known traffic pattern beforehand

PS vs. TM

Following from Kapre et al. / FCCM 2006
Packet-Switched (PS)

- Messages are dynamically routed on the network
 - Based on address in the packet
 - Complex switches (queues and address decode logic)
 - Known issues with deadlock/livelock/load-distribution (complex routing algorithms, poor route quality)
- No prior knowledge of routes required,

Intuitive Tradeoff (PS)

- Benefit of Packet Switching?
 - No area proportional to time steps
 - Route only active connections
 - Avoids slow, off-line routing
- Cost of Packet Switching?
 - Online decision making
 - Maybe won't use wires as well
 - Potentially slower routing?
 - Slower clock or more clocks across net
 - Data will be blocked in network
 - Adds latency
 - Requires packet queues (area)

Local Online vs. Global Offline

Butterfly Fat Trees (BFTs)

- Familiar from Day 15, 16
- Similar phenomena with other topologies
- Directional version

BFT Terminology

- $T = \text{t-switch}$
- $\pi = \text{pi-switch}$
- $p = \text{Rent Parameter}$ (defines sequence of T and π switches)
- $c = \text{PE IO Ports}$ (parallel BFT planes)

PS Hardware Primitives

- Split
- Merge
Analysis

- PS v/s TM for same topologies
 - Quantify inherent benefit of TM
- PS v/s TM for same area
 - Understand area tradeoffs (PEs v/s Interconnect)
- PS v/s TM for dynamic traffic
 - PS routes limited traffic, TM has to route all traffic

Iso-PEs

- PS vs. TM ratio at same PE counts
 - Small number of PEs little difference
 - Dominated by serialization (self-messages)
 - Not stressing the network
 - Larger PE counts
 - TM ~60% better
 - TM uses global congestion knowledge while scheduling

Area Effects

- Based on FPGA overlay model
- i.e. build PS or TM on top of FPGA
Area Analysis

- Evaluate PS and TM for multiple BFTs
 - Tradeoff Logic Area for Interconnect
 - Fixed Area of 130K slices
 - p=0, BFT => 128 PS PEs => 1476 cycles
 - p=0.5, BFT => 64 PS PEs => 943 cycles
- Extract best topologies for PS and TM at each area point
 - BFT of different p best at different area points
- Compare performance achieved at these bests at each area point

PS Iso Area: Topology Selection

TM Iso Area

Iso Area

- Iso-PEs = TM 1~2x better
- With Area
 - PS 2x better at small areas
 - TM 4-5x better at large areas
 - PS catches up at the end
- Iso-Area = TM ~5x better
Activity Factors

- Activity = Fraction of traffic to be routed
- TM needs to route all
- PS can route fraction
- Variable activity queries in ConceptNet
 - Simple queries ~1% edges
 - Complex queries ~40% edges

Crossover could be less

Lessons

- Latency
 - PS could achieve same clock rate
 - But took more cycles
 - Didn’t matter for this workload
- Quality of Route
 - PS could be 60% worse
- Area
 - PS larger, despite all the TM instrs
 - Big factor
 - May be “technology” dependent
 - Need to review for custom model
 - Will be smaller relative factor for custom

Admin

- Homework 8
- Final Exercise

Big Ideas

[MSB Ideas]

- Different interconnect switching styles based on
 - Relative throughput, predictability, persistence, latency
- Low throughput \(\rightarrow\) time share interconnect
- High predictability
 - Efficiency for offline/global solutions
- Low predictability \(\rightarrow\) dynamic