Due: Monday, January 25, 12:00PM (except A.3, C.2 as noted)

For all assignments in this class: Writeups must be done in electronic form and submitted through blackboard. Use CAD or drawing tools where appropriate. Handwritten assignments and hand-drawn figures are not acceptable.

You may do sections (A and B) or (B and C). C is primarily intended as a more challenging (interesting) alternative for students who have already had considerable experience with digital logic.

You may use hierarchial schematics. Use of a schematic drawing program for circuits is encouraged.

A: Basic Logic

1. Implement $A > B$ out of 2-input NAND gates; assume A and B are 4b unsigned numbers. (Hint: design the bit slice and show how the bit slices compose for 4b numbers.)

2. Using your comparison function from A.1, show logic for a spatial sorting function to sort 4, 4b inputs into ascending order.

3. Show the logic (RTL logic – i.e. logic equations and registers) for a simple vending machine. [Defer this to Monday, February 1 – return with HW2.]

 Inputs: n, d, and q, (nickle, dime, quarter)
 Output: v (vend), nc (nickle change)
 Function: Collect \geq30 cents, then vend and give change in nickles.

 • Don’t worry about running out of nickles to provide as change.
 • Include a diagram of your state-transition graph in your writeup.
 • Hint: It is probably easier not to use adders and datapath logic for this problem.

Course Web Page: <http://www.seas.upenn.edu/~ese534/>
B: Properties of Boolean Functions

1. Consider all two-input functions. (How many functions are there?)
 For each function, identify if the function is universal; you may tie the inputs of a
 function to a constant 0 or 1. Your writeup should be a table, with the following
 entries for each two-input function:

 • list on-set minterms (i.e. the truth table)
 • logic expression for function
 • universal?
 • explanation of why or why not

2. Counting each gate as unit size, give a bound on the size ratio between an optimal
 implementation of an arbitrary \(n \)-input function when the implementation may use an
 optimal mixture of the full set of 2-input functions from B.2 as gates compared to an
 implementation which uses only 2-input NOR gates.

C: Advanced Logic Problems

1. Using only two-input NOR gates, give a bound on the number of different functions
 that can be implemented with depth \(l \). (Your bound should be non-trivial, but does
 not need to be tight.)

2. Firing Squad – Design the logic for an FSmodule. [Defer this to Monday, February 1
 – return with HW2.]

 • FSmodules can be assembled into a 1d array of arbitrary length.
 • Each FSmodule is connected exclusively to his left and right neighbors.
 • The leftmost FSmodule will get a start input.
 • FSmodules may have configuration input bits which distinguish the leftmost and
 rightmost modules from the rest (i.e. a module will be leftmost, rightmost, or a
 chained element).
 • All FSmodules are clocked together.
 • Data can travel from one FSmodule to his adjacent neighbor in one cycle.
 • You can have a constant number of wires between adjacent FSmodules (independent
 of the length of the 1d array).
 • The state in an FSmodule is finite and independent of the length of the 1d array.
 • In response to an input pulse on the leftmost module, the array of FSmodules
 should all, simultaneously flash an output light.
 • The number of cycles between the input pulse and the synchronized firing of the
 FSmodules’ lights is not restricted.

Show your state-transition graph and gate logic (you may write equations for the logic
as long as the equations identify the primitive gates). Describe the operation of your
solution.