ESE534: Computer Organization

Day 17: March 29, 2010
Interconnect 2: Wiring Requirements and Implications

Previously

- Identified need for Interconnect
- Seen that interconnect can be expensive
- Identified need to understand/exploit structure in our interconnect design

Today

- Wiring Requirements
- Rent’s Rule
 - A model of structure
- Implications

Wires and VLSI

- Simple VLSI model
 - Gates have fixed size (A_{gate})
 - Wires have finite spacing (W_{wire})
 - Have a small, finite number of wiring layers
 - E.g.
 - one for horizontal wiring
 - one for vertical wiring
 - Assume wires can run over gates

Visually: Wires and VLSI

Preclass 1

- How many $40F \times 40F$ gates in $25,000F \times 25,000F$ region?

- How many wires can go in and out?

- Ratio?
Important Consequence

- A set of wires
- crossing a line
- take up space:
 \[W = \frac{N \times W_{\text{wire}}}{N_{\text{layers}}} \]

Thompson’s Argument

- The minimum area of a VLSI component is bounded by the larger of:
 - The area to hold all the gates
 \[A_{\text{chip}} \geq N \times A_{\text{gate}} \]
 - The area required by the wiring
 \[A_{\text{chip}} \geq N_{\text{horizontal}} W_{\text{wire}} \times N_{\text{vertical}} W_{\text{wire}} \]

How many wires?

- We can get a lower bound on the total number of horizontal (vertical) wires by considering the bisection of the computational graph:
 - Cut the graph of gates in half
 - Minimize connections between halves
 - Count number of connections in cut
 - Gives a lower bound on number of wires

Bisection

- Graph with N nodes
 - Cut in half
 - N/2 gates on each side
 - Worst-case?
 - Every gate output on each side
 - Is used somewhere on other side
 - Cut contains N wires

Next Question

- In general, if we:
 - Cut design in half
 - Minimizing cut wires
 - How many wires will be in the bisection?
Arbitrary Graph

- For a random graph
 - Something proportional to this is likely
- That is:
 - Given a random graph with N nodes
 - The number of wires in the bisection is likely to be: $c \times N$

Particular Computational Graphs

- Some important computations have exactly this property
 - FFT (Fast Fourier Transform)
 - Sorting

fft

Assembling what we know

- $A_{\text{chip}} \geq N \times A_{\text{gate}}$
- $A_{\text{chip}} \geq N_{\text{horizontal}} \times W_{\text{wire}} \times N_{\text{vertical}} \times W_{\text{wire}}$
- $N_{\text{horizontal}} = c \times N$
- $N_{\text{vertical}} = c \times N$
 - [bound true recursively in graph]
- $A_{\text{chip}} \geq cN \times W_{\text{wire}} \times cN \times W_{\text{wire}}$

Assembling ...
Result

- $A_{\text{chip}} \geq N \times A_{\text{gate}}$
- $A_{\text{chip}} \geq N^2 \times c'$
- Wire area grows faster than gate area
- Wire area grows with the square of gate area
- For sufficiently large N,
 - Wire area dominates gate area

Preclass 2

- How does ratio change for 100,000 F×100,000 F region?

Intuitive Version

- Consider a region of a chip
- Gate capacity in the region goes as area (s^2)
- Wiring capacity into region goes as perimeter (4s)
- Perimeter grows more slowly than area
 - Wire capacity saturates before gate

Result

- $A_{\text{chip}} \geq N^2 \times c'$
- Wire area grows with the square of gate area
- Troubling:
 - To double the size of our computation
 - Must quadruple the size of our chip!

First Observation

- Not all designs have this large of a bisection
 - What is typical?
Array Multiplier

Shift Register

Architecture ↔ Structure

- Typical architecture trick:
 - exploit expected problem structure
- What structure do we have?
- Impact on resources required?

Bisection Bandwidth

- Bisection bandwidth of design
 → lower bound on wire crossings
 - important, first order property of a design.
 - Measure to characterize
 - Rather than assume worst case
- Design with more locality
 → lower bisection bandwidth
- Enough?

Characterizing Locality

- Single cut not capture locality within halves
- Cut again
 → recursive bisection

Regularizing Growth

- How do bisection bandwidths shrink (grow) at different levels of bisection hierarchy?
- Basic assumption: Geometric
 - 1
 - $1/\alpha$
 - $1/\alpha^2$
Geometric Growth

- \((F, \alpha)\)-bifurcator
 - \(F\) bandwidth at root
 - geometric regression \(\alpha\) at each level

Rent’s Rule

- In the world of circuit design, an empirical relationship to capture:
 \[\text{IO} = c \ N^p \]
- \(0 \leq p \leq 1\)
- \(p\) – characterizes interconnect richness
- Typical: \(0.5 \leq p \leq 0.7\)
- “High-Speed” Logic \(p=0.67\)

Rent and Locality

- Rent and IO quantifying locality
 - local consumption
 - local fanout

What tell us about design?

- Recursive bandwidth requirements in network
As a function of Bisection

- $A_{\text{chip}} \geq N \times A_{\text{gate}}$
- $A_{\text{chip}} \geq N_{\text{horizontal}} W_{\text{wire}} \times N_{\text{vertical}} W_{\text{wire}}$
- $N_{\text{horizontal}} = N_{\text{vertical}} = IO = cN^p$
- $A_{\text{chip}} \geq (cN)^{2p}$
- If $p<0.5$, $A_{\text{chip}} \propto N$
- If $p>0.5$, $A_{\text{chip}} \propto N^{2p}$

In terms of Rent’s Rule

- If $p<0.5$, $A_{\text{chip}} \propto N$
- If $p>0.5$, $A_{\text{chip}} \propto N^{2p}$
- Typical designs have $p>0.5$ → interconnect dominates

What tell us about design?

- Recursive bandwidth requirements in network → lower bound on resource requirements
- N.B. necessary but not sufficient condition on network design → i.e. design must also be able to use the wires

What tell us about design?

- Interconnect lengths
 - Intuition
 - if $p>0.5$, everything cannot be nearest neighbor
 - as p grows, so wire distances
 - Can think of p as dimensionality: $p = 1-1/d$

Preclass 3

- 25,000 F side, 40F × 40 F gates
- Wire length?
Generalizing Interconnect Lengths

- \(P > 0.5 \)
- Side is \(\sqrt{N} \)
- IO crossing it is \(N^p \)
- What’s minimum length for longest wires?
 - Implication:
 - Wire lengths grow at least as fast as \(N^{(p-0.5)} \)

\[
BW = N^p
\]

Delays

- Logical capacities growing
- Wirelengths?
 - No locality \(\propto \kappa \)
 - Rent’s Rule
 - \(L \propto N^{(p-0.5)} \)
 - \([p>0.5]\)

Recall from Day 7

Capacity

- Rent: \(IO = C \times N^p \)
- \(A = C \times N^{2p} \)
- \(N = \left(\frac{A}{C}\right)^{1/(2p)} \)
- Logical Area \(\propto \kappa^2 \)
- \(N = \left(\frac{\kappa^2 A}{C}\right)^{1/(2p)} \)
- \(N = \left(\frac{\kappa^2}{C}\right)^{1/(2p)} \)
- \(N = N \times (\kappa)^{1/p} \)

- Sanity Check
 - \(p=1 \)
 - \(N_2 = \kappa N \)
 - \(p-0.5 \)
 - \(N_2 = \kappa^2 N \)

What tell us about design?

- \(IO \propto N^p \)
- Bisection BW \(\propto N^p \)
- side length \(\propto N^p \)
 - \(N \) if \(p < 0.5 \)
- Area \(\propto N^{2p} \)
 - \(p > 0.5 \)
- Average Wire Length \(\propto N^{p-0.5} \)
 - \(p > 0.5 \)

N.B. 2D VLSI world has “natural” Rent of \(P=0.5 \) (area vs. perimeter)

Rent’s Rule Caveats

- Modern “systems” on a chip — likely to contain subcomponents of varying Rent complexity
- Less I/O at certain “natural” boundaries
- System close
 - Rent’s Rule apply to workstation, PC, MP3 player, Smart Phone?

Preclass 4

- Depth 20 circuit, 2-input gates
 - Maximum number of gates?
 - Topology?
 - Rent \(p \)?
 - Minimum distance?
 - Lower bound maximum length
- Depth 24 circuit
 - Lower bound maximum length?
Area/Wire Length

• Bad news
 – Area $\sim \Omega(N^{2p})$
 • faster than N
 – Avg. Wire Length $\sim \Omega(N^{p-0.5})$
 • grows with N
• Can designers/CAD control p (locality) once appreciate its effects?
• I.e. maybe this cost changes design style/criteria so we mitigate effects?

What Rent didn’t tell us

• Bisection bandwidth purely geometrical
• No constraint for delay
 – I.e. a partition may leave critical path weaving between halves

Critical Path and Bisection

Minimum cut may cross critical path multiple times. Minimizing long wires in critical path \rightarrow increase cut size.

Original Memo

• Current Issue (Winter 2010, v2n1) of IEEE Solid-State Circuits Magazine
• Retrospect on IBM 1401 and E. F. Rent
 – Including original memos
• Added link to reading

Admin

• HW5 graded
• HW8 out – due April 12th
• Reading for Wed. on web

Big Ideas

[MSB Ideas]

• Rent’s rule characterizes locality
 Fixed wire layers:
 \rightarrow Area growth $\Omega(N^{2p})$
 \rightarrow Wire Length $\Omega(N^{p-0.5})$
• $p>0.5 \rightarrow$ interconnect growing faster than compute elements
 – expect interconnect to dominate other resources