Due: Monday, January 23, 12:00PM

For all assignments in this class: Writeups must be done in electronic form and submitted through blackboard. Use CAD or drawing tools where appropriate. Handwritten assignments and hand-drawn figures are not acceptable. You may use hierarchial schematics. Use of a schematic drawing program for circuits is encouraged.

1. Implement $A > B$ out of 2-input NAND gates

 (a) Design the bit slice that takes in $A[i],\ B[i]$ and two bits from the next more significant bit slice $(i+1)$ and produces two bits that communicate to the next less significant bit slice $(i-1)$.

 (b) Show how the bit slices compose for 4b unsigned numbers.

2. Using your comparison function from Problem 1, show logic for a spatial sorting function to sort 4, 4-bit inputs into ascending order.

3. Consider all two-input functions. (How many functions are there?) For each function, identify if the function is universal. You may tie the inputs of a function to a constant 0 or 1. You may connect the same signal into both gate inputs. Your writeup should be a table, with the following entries for each two-input function:

 - list on-set minterms (i.e. the truth table)
 - logic expression for function
 - universal?
 - explanation of why or why not

4. Counting each gate as unit size, give an upper bound on the size ratio between:

 - an implementation that uses only 2-input NOR gates
 - an optimal implementation of an arbitrary n-input function when the implementation may use an optimal mixture of the full set of 2-input functions from Problem 3 as gates