ESE534: Computer Organization

Day 11: February 20, 2012
Instruction Space Modeling

Last Time

• Instruction Requirements
• Instruction Space

Architecture Taxonomy

<table>
<thead>
<tr>
<th>PCs</th>
<th>Pints/PC</th>
<th>depth</th>
<th>width</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>FPGA</td>
</tr>
<tr>
<td>1</td>
<td>N (48,640)</td>
<td>8</td>
<td>1</td>
<td>Tabula ABAX (A1EC04)</td>
</tr>
<tr>
<td>1</td>
<td>1024</td>
<td>32</td>
<td></td>
<td>Scalar Processor (RISC)</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>D</td>
<td>W</td>
<td>VLIW (superscalar)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Small</td>
<td>W*N</td>
<td>SIMD, GPU, Vector</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>(47)</td>
<td>2048</td>
<td>16-core</td>
</tr>
<tr>
<td>N</td>
<td>D</td>
<td>W</td>
<td></td>
<td>MIMD</td>
</tr>
</tbody>
</table>

Today

• Model Architecture from Instruction Parameters
 – implied costs
 – gross application characteristics

Quotes

• If it can’t be expressed in figures, it is not science; it is opinion. -- Lazarus Long

Modeling

• Why do we model?
Motivation

• Need to understand
 – How costly is a solution
 • Big, slow, hot, energy hungry….
 – How compare to alternatives
 – Cost and benefit of flexibility

What we really want:

• Complete implementation of our application
• For each architectural alternatives
 – In same implementation technology
 – w/ multiple area-time points

Reality

• Seldom get it packaged that nicely
 – much work to do so
 – technology keeps moving
• We must deal with
 – estimation from components
 – technology differences
 – few area-time points

Modeling Instruction Effects

• Restrictions from "ideal"
 + save area and energy
 – limit usability (yield) of PE
 • May cost more energy, area in the end…
• Want to understand effects
 – area model [today] (energy model on HW5)
 – utilization/yield model

Preclass

• Energies?
 – 8-bit, 16-bit, 32-bit
• 16-bit on 32-bit?
 – Sources of inefficiency?
• 8-bit operations per 16-bit operation?
• 16-bit on 8-bit?
 – Sources of inefficiency?

Efficiency/Yield Intuition

• What happens when
 – Datapath is too wide?
 – Datapath is too narrow?
 – Instruction memory is too deep?
Efficiency/Yield Intuition

- What happens when
 - Datapath is too wide?
 - Datapath is too narrow?
 - Instruction memory is too deep?
 - Instruction memory is too shallow?

Computing Device

- Composition
 - Bit Processing elements
 - Interconnect: space
 - Interconnect: time
 - Instruction Memory

Relative Sizes

- Bit Operator: 3-5KF
- Bit Operator Interconnect: 200K-250KF
- Instruction (w/ interconnect): 20KF
- Memory bit (SRAM): 250-500F

Model Area

\[A_{bit.elm} = A_{fixed} + N_{SW} (N_p, w_p) \cdot A_{SW} \]

\[+ \left(\frac{c}{d} \cdot n_{bits} \cdot A_{mem.cell} \right) \]

\[+ d \cdot A_{mem.cell} \]
Architectures Fall in Space

Calibrate Model

Calibration model for architectures:
- FPGA: \(w = 1, d = c = 1, k = 4 \) 880K\(\mu \)m\(^2\)
- Xilinx 4K: 630K\(\mu \)m\(^2\)
- Altera 8K: 930K\(\mu \)m\(^2\)
- SIMD: \(w = 1000, c = 0, d = 64, k = 3 \) 170K\(\mu \)m\(^2\)
- Abacus: 190K\(\mu \)m\(^2\)
- Processor model: \(w = 32, d = 32, c = 1024, k = 2 \) 2.6M\(\mu \)m\(^2\)
- MIPS-X: 2.1M\(\mu \)m\(^2\)

Peak Densities from Model

Peak Densities from Model

- Only 2 of 4 parameters
 - small slice of space
 - 100x density across

- Large difference in peak densities
 - large design space!

Architectural parameters \(\rightarrow \) Peak Densities

Efficiency

- What do we really want to maximize?
 - Not peak, “guaranteed not to exceed” performance, but…
 - Useful work per unit silicon [per Joule]

- Yield Fraction / Area
- (or minimize (Area/Yielded performance))
Efficiency

- For comparison, look at relative efficiency to ideal.
- Ideal = architecture exactly matched to application requirements
- Efficiency = \(\frac{A_{\text{ideal}}}{A_{\text{arch}}} \)
- \(A_{\text{arch}} = \text{Area Op/Yield} \)

Width Mismatch Efficiency Calculation

\[
E = \frac{\text{Area(Task – on – matched – Architecture)}}{\text{Area(Task – on – this – Architecture)}}
\]

\[
E = \frac{W_{\text{task}} \times A_{\text{ideal}}}{W_{\text{arch}} \times \left[\frac{W_{\text{task}}}{W_{\text{arch}}} \right] \times A_{\text{ideal}}}
\]

Efficiency: Width Mismatch

\(c=1, \quad 16\text{K PEs} \)

Efficiency for Preclass

\[
E = \frac{\text{Energy(Task – on – matched – Architecture)}}{\text{Energy(Task – on – this – Architecture)}}
\]

- Preclass 6 table

Application vs. Architecture

- \(W_{\text{task}} \) vs. \(W_{\text{arch}} \)
- Path Length vs. Context Depth

Path Length

- How many primitive-operator delays before can perform next operation?
 - Reuse the resource
Reuse

How many times can I reuse each primitive operator?

Path Length: How much sequentialization is allowed (required)?

E.g. Want meet 30ns real time rate with 1.5ns cycle time, can afford to issue 15 sequential ops.

Context (Instruction) Depth

Efficiency with fixed Width

- $w=1$, 16K PEs

Ideal Efficiency (different model)

- Two resources here:
 - active processing elements
 - operation description/state

Applications need in different proportions.

Robust Point

- What is Energy Robust Point for preclass model?

Robust Point depend on Width

- $w=1$
- $w=8$
- $w=64$
Processors and FPGAs
(architecture vs. two application axes)

FPGA $c=d=1, w=1, k=4$

"Processor" $c=d=1024, w=64, k=2$

Application Needs

- What are common application datawidths?
- What are common application path lengths?

Examples

<table>
<thead>
<tr>
<th>Application</th>
<th>Wapp</th>
<th>Lcritpath</th>
<th>Lpath</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conway LIFE</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Run as fast as possible</td>
</tr>
<tr>
<td>Entropy Code</td>
<td>1</td>
<td>1-10</td>
<td>100</td>
<td>100ns memory interface</td>
</tr>
<tr>
<td>Video</td>
<td>8</td>
<td>1-6</td>
<td>24</td>
<td>1GHz for 1024x1024 x30 frames/s</td>
</tr>
<tr>
<td>Audio</td>
<td>16</td>
<td>1-10</td>
<td>20,000</td>
<td>44KHz for 1GHz</td>
</tr>
<tr>
<td>FDTD</td>
<td>35</td>
<td>1-5</td>
<td>1-5</td>
<td></td>
</tr>
</tbody>
</table>

Intermediate Architecture

$w=8$
$c=64$
16K PEs

Hard to be robust across entire space...

Caveats

- Model abstracts away many details that are important
 - interconnect (day 15--18)
 - control (day 22)
 - specialized functional units (day 14)
- Applications are a heterogeneous mix of characteristics

Modeling Message

- Architecture space is huge
- Easy to be very inefficient
- Hard to pick one point robust across entire space
- Why we have so many architectures?
General Message

- Parameterize architectures
- Look at continuum
 - costs
 - benefits
- Often have competing effects
 - leads to maxima/minima

Admin

- Should now have all background for HW5
 - Problem 2 similar (looking for robust point)
 - Different: Interconnect parameter, Energy
- No class Wednesday
- No office hours Tuesday
- Next class Monday
 - Reading online
- HW 6 out
 - 1 and 2 due Friday 2/3
 - Should be able to do 1 now

Big Ideas

[MSB Ideas]

- Applications typically have structure
- Exploit this structure to reduce resource requirements
- Architecture is about understanding and exploiting structure and costs to reduce requirements

Big Ideas

[MSB Ideas]

- Instruction organization induces a design space (taxonomy) for programmable architectures
- Arch. structure and application requirements mismatch ⇒ inefficiencies
- Model ⇒ visualize efficiency trends
- Architecture space is huge
 - can be very inefficient
 - need to learn to navigate