Previously

- Instruction Space Modeling
 - huge range of densities
 - huge range of efficiencies
 - large architecture space
 - modeling to understand design space

Today

- Look at Programmable Compute Blocks
- Specifically LUTs
- Introduce recurring theme (methodology):
 - define parameterized space
 - identify costs and benefits
 - look at typical application requirements
 - compose results, try to find best point

Compute Function

- What do we use for “compute” function?
 - Any Universal
 - NAND
 - ALU
 - LUT

Lookup Table

- Load bits into table
 - 2^N bits to describe
 - $\rightarrow 2^N$ different functions

- Table translation
 - performs logic transform
We could...

• Just build a large memory = large LUT
• Put our function in there
• What’s wrong with that?

How big is a k-LUT?

• k-input, 1-output?
• k-input, m-output?

FPGA = Many small LUTs

Alternative to one big LUT

What’s best to use?

• Small LUTs
• Large Memories

• ...small LUTs or large LUTs
• Continuum question: how big should our memory blocks used to perform computation be?

Start to Sort Out: Big vs. Small Luts

• Establish equivalence
 – how many small LUTs equal one big LUT?
"gates" in 2-LUT?

How Much Logic in a LUT?

• Lower Bound?
 – Concrete: 4-LUTs to implement M-LUT?
• Not use all inputs?
 – 0 ... maybe 1
• Use all inputs?
 – \((M-1)/3\)

(M-1)/(k-1) for K-lut

How Much logic in a LUT?

• Upper Upper Bound?:
 – M-LUT implemented w/ 4-LUTs
 – M-LUT \(\leq 2^{M-4+(2^{M-4}-1)} \leq 2^{M-3}\) 4-LUTs

How Much?

• Combine
 – Lower Upper Bound
 – Upper Lower Bound
 – (number of 4-LUTs in M-LUT)
 \[2^{M-4} \leq n \leq 2^{M-3}\]

Memories and 4-LUTs

• For the most complex functions
 – an M-LUT has \(\sim 2^{M-4}\) 4-LUTs

 ◊ SRAM 32Kx8 \(\lambda=0.6\mu m\)
 – 170M\(\lambda^2\) (21ns latency)
 – 8\(\times 2^{11}\) =16K 4-LUTs

 ◊ XC3042 \(\lambda=0.6\mu m\)
 – 180M\(\lambda^2\) (13ns delay per CLB)
 – 288 4-LUTs

 • Memory is 50+x denser than FPGA
 • Memory is 50+x denser than FPGA
 ... and faster
Memory and 4-LUTs

- For “regular” functions?
 - 15-bit parity
 - entire 32Kx8 SRAM
 - How many 4-LUTs?
 - 5 4-LUTs
 - (2% of XC3042 ~ 3.2Mλ^2 ~ 1/50th Memory)

Preclass: 16-bit Adder from Memory and 3-LUTs

- How many inputs? outputs?
- Area for single large LUT?
- How many 3-LUTs?
- Area per 3-LUT?
- LUT area to implement adder with 3-LUTs?
 - Not include interconnect
- Ratio?

Memory and 4-LUTs

- Same 32Kx8 SRAM
 - 7b Add
 - entire 32Kx8 SRAM (largest will support)
 - 14 4-LUTs
 - (5% of XC3042, 8.8Mλ^2 ~ 1/20th Memory)

LUT + Interconnect

- Interconnect allows us to exploit structure in computation
- Consider addition:
 - N-input add takes
 - 2N 3-LUTs
 - one N-output (2N)-LUT
 - N\times22N >> 2N\times23
 - N=16: 16\times232 >> 2\times16\times23
 - 236 >> 28 \rightarrow factor of 228 = 256 Million

- Structure exploitation to avoid exponential costs is worth it!

LUT + Interconnect

- Interconnect allows us to exploit structure in computation
- Even if Interconnect was 99% of the area (100\times logic area)
 - Would still be worth paying!
 - Add: N\times22N >> 2N\times(23 \times 128)
 - N=16: 16\times232 >> 2\times16\times210=215
 - \rightarrow factor of 215 = 2 Million
- Structure exploitation to avoid exponential costs is worth it!

Different Instance of a Familiar Concept

- The most general functions are huge
- Applications exhibit structure
 - Typical functions not so complex
- Exploit structure to optimize “common” case
LUT Count vs. base LUT size

Simple: \(\frac{M-1}{K-1} \)

Complex: \(2^{(M-K)} \)

LUT vs. K

- DES MCNC Benchmark
 - moderately irregular

Gross Scaling Trend

Simple: \(\frac{1}{K} \)

Complex: \(\frac{1}{2^K} \)

Toronto Experiments

- Want to determine best K for LUTs
- Bigger LUTs
 - handle complicated functions efficiently
 - less interconnect overhead
- Smaller LUTs
 - handle regular functions efficiently
 - interconnect allows exploitation of compute structure
- What’s the typical complexity/structure?

Standard Systematization

1. Define a design/optimization space
 - pick key parameters
 - e.g. K = number of LUT inputs
2. Build a cost model
3. Map designs
4. Look at resource costs at each point
5. Compose:
 - Logical Resources ⊕ Resource Cost
6. Look for best design points
Toronto LUT Size

- Map to K-LUT
 - use Chortle
- Route to determine wiring tracks
 - global route
 - different channel width W for each benchmark
- Area Model for K and W
 - A_{int} exponential in K
 - Interconnect area based on switch count

LUT Area vs. K

Interconnect ~ 20x logic

LUT Area vs. K

- Logic Area vs. K
- Routing Area vs. K
- Total Area vs. K

Maped LUT Area

- Compose Mapped LUTs and Area Model

Total Area = \#k-LUTs \times \text{Area/k-LUT}

N.B. unusual case minimum area at $K=3$
Area vs. K (different tools)

Toronto Result
- Minimum LUT Area
 - at K=4
 - robust for different switch sizes
 * (wire widths)
 * [see graphs in paper]

Implications
Can we make more general conclusions?
- More restricted logic functions than LUTs?

Implications (Deep)
In the range the minimizes area:
- LUT area negligible compared to interconnect
- Anything less flexible than LUT will require more interconnect

Implications
Can we make more general conclusions?
- Custom? / Gate Arrays?

Delay
Delay?

- Circuit Depth in LUTs?
- Lower bound?
 - (M-input fun using K-LUTs)
- "Simple Function" \(\rightarrow\) M-input AND

1 table lookup in M-LUT
\(\log_2(M)\) lookups in K-LUT

Delay?

- M-input "Complex" function
 - Upper Bound:
 - use each k-lut as a k- \(\log_2(k)\) input mux
 - Upper Bound: \([\frac{(M-k)}{\log_2(k)}]+1\)

Will not cover in class, here if want to see additional details.

Delay?

- M-input "Complex" function
 - 1 table lookup for M-LUT
 - Lower Upper bound: \([\log_2(2^{(M-k)})]+1\)
 - \([\log_2(2^{(M-k)})]=(M-k)\log_2(2)\)

Will not cover in class, here if want to see additional details.

Delay?

- M-input "Complex" function
 - Lower Upper bound: \([\log_2(2^{(M-k)})]+1\)
 - \([\log_2(2^{(M-k)})]=(M-k)\log_2(2)\)
 - Lower Upper Bound: \([\frac{(M-k)}{\log_2(k)}]+1\)

Will not cover in class, here if want to see additional details.

Delay?

- M-input "Complex" function
 - 1 table lookup for M-LUT
 - between: \([\frac{(M-k)}{\log_2(k)}]+1\)
 - and \([\frac{(M-k)}{\log_2(k-\log_2(k))}]+1\)

Will not cover in class, here if want to see additional details.

Some Math

- \(Y=\log_2(2)\)
- \(k^Y = 2\)
- \(Y\log_2(k) = 1\)
- \(Y=1/\log_2(k)\)
- \(\log_2(2)=1/\log_2(k)\)
Delay

- **Simple**: \(\log M \)
- **Complex**: linear in \(M \)

- Both scale with \(k \) as \(1/\log(k) \)

Circuit Depth vs. \(K \)

[Lee et al., JSSC 27(3):281—287, 1992]

LUT Delay vs. \(K \)

- How LUT delay scale with \(k \) for small LUTs?
 - \(t_{\text{LUT}} = c_0 + c_1 \times K \)

- Large LUTs:
 - add length term
 - \(c_2 \times \sqrt{2^K} \)

- Plus Wire Delay
 - \(\sim \text{area} \)

Delay vs. \(K \)

[Why not satisfied with this model?]

Delay vs. \(K \) (different tools)

[Why not satisfied with this model?]

Delay vs. \(K \) (proper critical path interconnect)

[Yan et al., FPGA 2002]

[Luu et al., FPGA 2009]
Energy

Observation

• General interconnect is expensive
• "Larger" logic blocks
 ➢ fewer interconnect crossings
 ➢ reduces interconnect delay
 ➢ get larger
 ➢ less area efficient
 • don’t match structure in computation
 ➢ get slower
 • Happens faster than modeled here due to area

Admin

• Reading
 – Today’s: classic paper…**definitely read**
 – Wed. → no **required** reading
 • Are some suggestions
• Office hours Tuesday
 – Especially if still confused about HW6
• HW6.1-2 due on Friday

Big Ideas

[MSB Ideas]

• Memory most dense programmable structure for the **most complex** functions
• Memory inefficient (scales poorly) for structured compute tasks
• Most tasks have structure
• Programmable interconnect allows us to exploit that structure

Big Ideas

[MSB-1 Ideas]

• Area
 – LUT count decrease w/ K, but slower than exponential
 – LUT size increase w/ K
 • exponential LUT function
 • empirically linear routing area
 – Minimum area around K=4

Big Ideas

[MSB-1 Ideas]

• Delay
 – LUT depth decreases with K
 • in practice closer to log(K)
 – Delay increases with K
 • small K linear + large fixed term