ESE534: Computer Organization

Day 15: March 14, 2012
Interconnect 2: Wiring Requirements and Implications

Previously
- Identified need for Interconnect
- Seen that interconnect can be expensive
- Identified need to understand/exploit structure in our interconnect design

Today
- Wiring Requirements
- Rent’s Rule
 - A model of structure
- Implications

Wires and VLSI
- Simple VLSI model
 - Gates have fixed size (A_{gate})
 - Wires have finite spacing (W_{wire})
 - Have a small, finite number of wiring layers
 - E.g.
 - one for horizontal wiring
 - one for vertical wiring
 - Assume wires can run over gates

Visually: Wires and VLSI

Preclass 1
- How many 40F×40F gates in 25,000F×25,000F region?
- How many wires can go in and out?
- Ratio?
Important Consequence

- A set of wires
- crossing a line
- take up space:
 \[W = \frac{N \times W_{\text{wire}}}{N_{\text{layers}}} \]
 \[W = 7 \times W_{\text{wire}} \]

Thompson’s Argument

- The minimum area of a VLSI component is bounded by the larger of:
 - The area to hold all the gates
 \[A_{\text{chip}} \geq N \times A_{\text{gate}} \]
 - The area required by the wiring
 \[A_{\text{chip}} \geq N_{\text{horizontal}} \times W_{\text{wire}} \times N_{\text{vertical}} \times W_{\text{wire}} \]

How many wires?

- We can get a lower bound on the total number of horizontal (vertical) wires by considering the bisection of the computational graph:
 - Cut the graph of gates in half
 - Minimize connections between halves
 - Count number of connections in cut
 - Gives a lower bound on number of wires

Bisection

- Graph with \(N \) nodes
- Cut in half
 - \(N/2 \) gates on each side
 - Worst-case?
 - Every gate output on each side
 - Is used somewhere on other side
 - Cut contains \(N \) wires
Arbitrary Graph

- For a random graph
 - Something proportional to this is likely
- That is:
 - Given a random graph with N nodes
 - The number of wires in the bisection is likely to be: \(cN \)

Particular Computational Graphs

- Some important computations have exactly this property
 - FFT (Fast Fourier Transform)
 - Sorting

Assembling what we know

- \(A_{\text{chip}} \geq N \times A_{\text{gate}} \)
- \(A_{\text{chip}} \approx N_{\text{horizontal}} \times W_{\text{wire}} \times N_{\text{vertical}} \times W_{\text{wire}} \)
- \(N_{\text{horizontal}} = c \times N \)
- \(N_{\text{vertical}} = c \times N \)
- [bound true recursively in graph]
- \(A_{\text{chip}} \approx cN \times W_{\text{wire}} \times cN \times W_{\text{wire}} \)
Result

• $A_{\text{chip}} \geq N \times A_{\text{gate}}$
• $A_{\text{chip}} \geq N^2 \times c'$
• Wire area grows faster than gate area
• Wire area grows with the square of gate area
• For sufficiently large N,
 – Wire area dominates gate area

Intuitive Version

• Consider a region of a chip
• Gate capacity in the region goes as area (s^2)
• Wiring capacity into region goes as perimeter ($4s$)
• Perimeter grows more slowly than area
 – Wire capacity saturates before gate

Preclass 2

• How does ratio change for 100,000 F×100,000 F region?

Result

• $A_{\text{chip}} \geq N^2 \times c'$
• Wire area grows with the square of gate area
• Troubling:
 – To double the size of our computation
 – Must quadruple the size of our chip!

First Observation

• Not all designs have this large of a bisection

So what?

What do we do with this observation?

• What is typical?
Favorite Design Elements

- What are your favorite computing design elements?
- What are the bisection bandwidths for these elements?

Array Multiplier

Bisection Bandwidth

- Bisection bandwidth of design \(\rightarrow\) lower bound on wire crossings
 - Important, \textit{first order} property of a design.
 - Measure to characterize
 - Rather than assume worst case
- Design with more locality \(\rightarrow\) lower bisection bandwidth
- Enough?

Architecture \(\Leftrightarrow\) Structure

- Typical architecture trick:
 - Exploit expected problem structure
- What structure do we have?
- Impact on resources required?

Characterizing Locality

- Single cut does not capture locality within halves
- Cut again \(\rightarrow\) recursive bisection
Regularizing Growth

- How do bisection bandwidths shrink (grow) at different levels of bisection hierarchy?
- Basic assumption: Geometric
 - 1
 - $1/\alpha$
 - $1/\alpha^2$

Geometric Growth

- F bandwidth at root
- geometric regression α at each level
 - Or growth by α for every doubling

Good Model?

Log-log plot \rightarrow straight lines represent geometric growth

Rent’s Rule

- In the world of circuit design, an empirical relationship to capture:
 $$\text{IO} = c \cdot N^p$$
 - $0 \leq p \leq 1$
 - p – characterizes interconnect richness
 - Typical: $0.5 \leq p \leq 0.7$
 - “High-Speed” Logic $p=0.67$

Rent and Locality

- Rent and IO quantifying locality
 - local consumption
 - local fanout

What tell us about design?

- Recursive bandwidth requirements in network
As a function of Bisection

- \(A_{\text{chip}} \geq N \times A_{\text{gate}} \)
- \(A_{\text{chip}} \geq N_{\text{horizontal}} W_{\text{wire}} \times N_{\text{vertical}} W_{\text{wire}} \)
- \(N_{\text{horizontal}} = N_{\text{vertical}} = IO = cN^p \)
- \(A_{\text{chip}} \geq (cN)^{2p} \)
- If \(p < 0.5 \)
 \[A_{\text{chip}} \propto N \]
- If \(p > 0.5 \)
 \[A_{\text{chip}} \propto N^{2p} \]

In terms of Rent’s Rule

- If \(p < 0.5 \), \(A_{\text{chip}} \propto N \)
- If \(p > 0.5 \), \(A_{\text{chip}} \propto N^{2p} \)
- Typical designs have \(p > 0.5 \) → interconnect dominates

What tell us about design?

- Recursive bandwidth requirements in network
 - lower bound on resource requirements
- N.B. necessary but not sufficient condition on network design
 - i.e. design must also be able to use the wires

Capacity Impact

- Rent: \(IO = C \times N^p \)
 - \(p > 0.5 \)
 - \(A = C \times N^{2p} \)
 - \(N = (A/C)^{1/(2p)} \)
 - Logical Area \(\propto (1/S)^2 \)
 - \(N' = ((1/S)^2A/C)^{1/(2p)} \)
 - \(N' = N \times ((1/S)^2)^{1/(2p)} \)
 - \(N' = N \times (1/S)^{1/p} \)
- Sanity Check
 - \(p = 1 \)
 - \(N_2 = N/S \)
 - \(p = 0.5 \)
 - \(N_2 = N/S^2 \)

What tell us about design?

- Interconnect lengths
 - Intuition
 - if \(p > 0.5 \), everything cannot be nearest neighbor
 - as \(p \) grows, so wire distances

Can think of \(p \) as dimensionality: \(p = 1 - 1/d \)

Preclass 5

- 24,000 F side, 40F \(\times \) 40 F gates
- Wire length?
Preclass 5

- What’s minimum length for longest wires?

Generalizing Interconnect Lengths

- $P > 0.5$
- Side is \sqrt{N}
- IO crossing it is N^P
- What’s minimum length for longest wires?
- Implication:
 - Wire lengths grow at least as fast as $N^{(p-0.5)}$

Scaling → Delays

- Logical capacities on chip growing
- Wirelengths?
 - No locality \times chip-side = 1/S
 - Rent’s Rule
 - $L \propto N^{(p-0.5)}$
 - $[p > 0.5]$
 - Relative Logical Capacity

What tell us about design?

- IO $\propto N^P$
- Bisection BW $\propto N^P$
- side length $\propto N^p$
 - N if $p < 0.5$
- Area $\propto N^{2p}$
 - $p > 0.5$
- Average Wire Length $\propto N^{(p-0.5)}$
 - $p > 0.5$

N.B. 2D VLSI world has “natural” Rent of $P = 0.5$
(area vs. perimeter)

Preclass 6

- How many gates reachable with 800F of wiring?
- How many gates reachable with 1600F wiring?

Distance

- How many things at a given distance?
Preclass 7

- Depth 20 circuit, 2-input gates
 - Maximum number of gates?
 - Topology?
 - Minimum distance?
 - Lower bound maximum wire length?
- Depth 24 circuit
 - Lower bound maximum length?

“Closeness”

- Try placing “everything” close

<table>
<thead>
<tr>
<th>Manhattan Distance</th>
<th>Transitive Places</th>
<th>Transitive Fanin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>inf</td>
<td>4*inf</td>
<td>4*inf</td>
</tr>
</tbody>
</table>

Rent’s Rule Caveats

- Modern “systems” on a chip -- likely to contain subcomponents of varying Rent complexity
- Less I/O at certain “natural” boundaries
- System close
 - Rent’s Rule apply to workstation, PC, MP3 player, Smart Phone?

Area/Wire Length

- Bad news
 - Area ~ Ω(N^2p)
 - faster than N
 - Avg. Wire Length ~ Ω(N^{0.5})
 - grows with N
- Can designers/CAD control p (locality) once appreciate its effects?
- I.e. maybe this cost changes design style/criteria so we mitigate effects?

What Rent didn’t tell us

- Bisection bandwidth purely geometrical
- No constraint for delay
 - I.e. a partition may leave critical path weaving between halves

Critical Path and Bisection

Minimum cut may cross critical path multiple times. Minimizing long wires in critical path → increase cut size.
Original Memo

• Recent Issue (Winter 2010, v2n1) of IEEE Solid-State Circuits Magazine
• Retrospect on IBM 1401 and E. F. Rent
 – Including original memos
• Linked Supplemental Reading

Big Ideas
[MSB Ideas]

• Rent’s rule characterizes locality
 Fixed wire layers:
 → Area growth $\Omega(N^p)$
 → Wire Length $\Omega(N^{p-0.5})$
• $p>0.5 \rightarrow$ interconnect growing faster than compute elements
 – expect interconnect to dominate other resources

Admin

• HW7 due Monday
• Reading for Monday on web