ESE534: Computer Organization

Day 16: March 19, 2012
Interconnect 3: Richness

Last Time

• Rent’s Rule
 – And its implications
• Superlinear growth rate of interconnect
 \(p > 0.5 \)
 \(\implies \text{Area growth } \Omega(N^{2p}) \)

Today

• How rich should interconnect be?
 – specifics of understanding interconnect
 – methodology for attacking these kinds of questions

Now What?

• There is structure (locality)
• Rent characterizes locality
• How rich should interconnect be?
 – Allow full utilization of compute units?
 – What is most area efficient?
 \(\implies \text{Need to model requirements and area impact} \)

Preclass 1 and 2

• Wire count?
Preclass 1 and 2

- Wire count?

Step 1: Build Architecture Model

- Assume geometric growth
- Pick parameters: Build architecture can tune
 - C
 - p

Tree of Meshes

- Natural model is hierarchical
- Restricted internal bandwidth
- Can match to model

Parameterize C

Parameterize Growth by p

- What are IO schedules? (preclass 3)

Preclass 5

- What are IO schedules according to Rent for particular p's?
 - p=1/2
 - p=2/3
 - p=3/4

\[IO = c N^p \]
Parameterize p

- What is p for each network? (preclass 6)

Parameterize Growth

Step 2: Area Model

- Need to know effect of architecture parameters on area (costs)
 - focus on dominant components
 - wires
 - switches
 - logic blocks(?)

Area Parameters

- $A_{\text{logic}} = 10K \text{ } F^2$
- $A_{\text{sw}} = 625 \text{ } F^2$
- Wire Pitch = 4 F

Switchbox Population

- Full population is excessive (next lecture)
- Hypothesis: linear population adequate
 - still to be (dis)proven

“Cartoon” VLSI Area Model

(Example artificially small for clarity)
Step 3: Characterize Application Requirements

- Identify representative applications.
 - Today: IWLS93 logic benchmarks
- How much structure there?
- How much variation among applications?

Application Requirements

Max: C=7, P=0.68 Avg: C=5, P=0.72
Complication

• Interconnect requirements vary among applications
• Interconnect richness has large effect on area
• What is effect of architecture/application mismatch?
 – Interconnect too rich?
 – Interconnect too poor?

Interconnect Mismatch in Theory

Step 4: Assess Resource Impact

• Map designs to parameterized architecture
• Identify architectural resource required

Compare: mapping to k-LUTs; LUT count vs. k.

Mapping to Fixed Wire Schedule

• Easy if need fewer wires than Net
• If need more wires than net, must depopulate to meet interconnect limitations.

Preclass 4

• Smallest Network that Top graph fits on?
Mapping to Fixed-WS

- Better results if "reassociate" rather than keeping original subtrees.

Preclass 4

- Smallest Network that Middle graph fits on?

Middle vs. Top

- Smallest Network that Bottom graph fits on?

Observation

- Don't really want a "bisection" of LUTs
 - subtree filled to capacity by *either* of
 - LUTs
 - root bandwidth
 - May be profitable to cut at some place other than midpoint
 - not require "balance" condition
 - "Bisection" should account for both LUT and wiring limitations
Challenge

• Not know where to cut design
 – not knowing when wires will limit subtree capacity

Brute Force Solution

• Explore all cuts
 – start with all LUTs in group
 – consider “all” balances
 – try cut
 – Recurse

• Viable?

Brute Force

• Too expensive
• Exponential work

• …viable if solving same subproblems

Simplification

• Single linear ordering
• Partitions = pick split point on ordering
• Reduce to finding cost of [start,end] ranges (subtrees) within linear ordering
• Only n^2 such subproblems
• Can solve with dynamic programming

Dynamic Programming

• Just one possible “heuristic” solution to this problem
 – not optimal
 – dependent on ordering
 – sacrifices ability to reorder on splits to avoid exponential problem size

• Opportunity to find a better solution here...

Ordering LUTs

• Another problem
 – lay out gates in 1D line
 – minimize sum of squared wire length
 • tend to cluster connected gates together
 – Is solvable mathematically for optimal
 • Eigenvector of connectivity matrix

• Use this 1D ordering for our linear ordering
Step 5: Apply Area Model

- Assess impact of resource results

Resources × Area Model ⇒ Area

Net Area

Picking Network Design Point

<table>
<thead>
<tr>
<th>Objective</th>
<th>params</th>
<th>Sigma</th>
<th>LUT</th>
<th>relative area</th>
<th>rel area</th>
<th>Util.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P</td>
<td></td>
<td></td>
<td>6</td>
<td>0.6</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area with</td>
<td></td>
<td></td>
<td></td>
<td>full util</td>
<td>10</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>

Don’t optimize for 100% compute util. (100% yield)
...also don’t optimize for highest peak.

What about a single design?
LUT Utilization predict Area?

Methodology
1. Architecture model (parameterized)
2. Cost model
3. Important task characteristics
4. Mapping Algorithm
 – Map to determine resources
5. Apply cost model
6. Digest results
 – find optimum (multiple?)
 – understand conflicts (avoidable?)

Admin
• Reading for Wednesday online
• HW8 out

Big Ideas
[MSB Ideas]
• Interconnect area dominates logic area
• Interconnect requirements vary
 – among designs
 – within a single design
• To minimize area
 – focus on using dominant resource (interconnect)
 – may underuse non-dominant resources (LUTs)

Big Ideas
[MSB Ideas]
• Two different resources here
 – compute, interconnect
• Balance of resources required varies among designs (even within designs)
• Cannot expect full utilization of every resource
• Most area-efficient designs may waste some compute resources (cheaper resource)