ESE534: Computer Organization

Day 20: April 2, 2012
Retiming

Today

• Retiming Demand
 – Folded Computation
 – Logical Pipelining
 – Physical Pipelining

• Retiming Supply
 – Technology
 – Structures
 – Hierarchy

Retiming Demand

Image Processing

• Many operations can be described in terms of 2D window filters
 – Compute value as a weighted sum of the neighborhood
 – Blurring, edge and feature detection, object recognition and tracking, motion estimation, VLSI design rule checking

Preclass 2

• Describes window computation:
 1: for x=0 to N-1
 2: for y=0 to N-1
 3: out[x][y]=0;
 4: for wx=0 to W-1
 5: for wy=0 to W-1
 6: out[x][y]+=in[x+wx][y+wy]*c[wx][wy]

Preclass 2

• How many times is each in[x][y] used?
 1: for x=0 to N-1
 2: for y=0 to N-1
 3: out[x][y]=0;
 4: for wx=0 to W-1
 5: for wy=0 to W-1
 6: out[x][y]+=in[x+wx][y+wy]*c[wx][wy]
Preclass 2

• Sequentialized on one multiplier,
 – Distance between \text{in}[x][y] uses?

1: for \text{x}=0 to N-1
2: for \text{y}=0 to N-1
3: \text{out}[\text{x}][\text{y}]=0;
4: for \text{wx}=0 to W-1
5: for \text{wy}=0 to W-1
6: \text{out}[\text{x}][\text{y}] += \text{in}[\text{x+wx}][\text{y+wy}] \times c[\text{wx}][\text{wy}]

Parallel Scaling/Spatial Sum

• Compute entire window at once
 – More hardware, fewer cycles

Preclass 2

• Unroll inner loop,
 – Distance between \text{in}[x][y] uses?

1: for \text{x}=0 to N-1
2: for \text{y}=0 to N-1
3: \text{out}[\text{x}][\text{y}]=0;
4: for \text{wx}=0 to W-1
5: for \text{wy}=0 to W-1
6: \text{out}[\text{x}][\text{y}] += \text{in}[\text{x+wx}][\text{y+wy}] \times c[\text{wx}][\text{wy}]

Fully Spatial

• What if we gave each pixel its own processor?

Preclass 1

• How many registers on each link?
Flop Experiment #1

• Pipeline/C-slow/retime to single LUT delay per cycle
 – MCNC benchmarks to 256 4-LUTs
 – no interconnect accounting

Number of Registers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
Percentage | 72 | 16 | 4.5 | 2.2 | 1.3 | 0.96 | 1.2 | 0.46 | 0.12 | 0.11

– average 1.7 registers/LUT (some circuits 2–7)

Long Interconnect Path

• What happens if one of these links ends up on a long interconnect path?

Pipeline Interconnect Path

• To avoid cycle being limited by longest interconnect
 – Pipeline network

Chips >> Cycles

• Chips growing
• Gate delays shrinking
• Wire delays aren’t scaling down
• \(\Rightarrow \) Will take many cycles to cross chip

Clock Cycle Radius

• Radius of logic can reach in one cycle (45 nm)
 – Radius 10 (preclass 19: \(L_{seg}=5 \rightarrow 50 \text{ps} \))
 • Few hundred PEs
 – Chip side 600-700 PE
 • 400-500 thousand PEs
 – 100s of cycles to cross

Pipelined Interconnect

• In what cases is this convenient?
Pipelined Interconnect

• When might it pose a challenge?

Long Interconnect Path

• What happens here?

Long Interconnect Path

• Adds pipeline delays
• May force further pipelining of logic to balance out paths
• More registers

Reminder

Flop Experiment #1

• Pipeline/C-slow/retime to single LUT delay per cycle
 – MCNC benchmarks to 256 4-LUTs
 – no interconnect accounting

<table>
<thead>
<tr>
<th>Number of Registers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>72</td>
<td>16</td>
<td>4.5</td>
<td>2.2</td>
<td>1.3</td>
<td>0.96</td>
<td>1.2</td>
<td>0.46</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

– average 1.7 registers/LUT (some circuits 2–7)

Flop Experiment #2

• Pipeline and retime to HSRA cycle
 – place on HSRA
 – single LUT or interconnect timing domain
 – same MCNC benchmarks

<table>
<thead>
<tr>
<th>Number of Registers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>60</td>
<td>6.9</td>
<td>5.9</td>
<td>3.8</td>
<td>4.3</td>
<td>2.7</td>
<td>2.6</td>
<td>1.9</td>
<td>1.5</td>
<td>1.2</td>
<td>9.2</td>
</tr>
</tbody>
</table>

– average 4.7 registers/LUT

Retiming Requirements

• Retiming requirement depends on parallelism and performance
• Even with a given amount of parallelism
 – Will have a distribution of retiming requirements
 – May differ from task to task
 – May vary independently from compute/interconnect requirements
 • Another balance issue to watch
 – Balance with compute, interconnect
 • Need a canonical way to measure
 Like Rent?

[Tsu et al., FPGA 1999]
Retiming Supply

Optional Output

• Flip-flop (optionally) on output
 – flip-flop: 1K F^2
 – Switch to select: $\sim 1.25K F^2$
 – Area: 1 LUT (200K\rightarrow 250K F^2/LUT)
 – Bandwidth: 1b/cycle

Output

• Single Output
 – Ok, if don’t need other timings of signal
• Multiple Output
 – more routing

Input

• More registers (K_x)
 – 2.5K F^2/register+mux
 – 4-LUT \Rightarrow 10K F^2/depth
• No more interconnect than unretimed
 – open: compare savings to additional reg. cost
• Area: 1 LUT (250K$+\star$10K F^2) get K_d regs
 • $d=4$, 290K F^2
 • Bandwidth: K/cycle
 • $1/d$ th capacity

Preclass 3

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
<th>Area per Block</th>
<th>Blocks Needed</th>
<th>Total Area</th>
<th>Used?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-LUT with single optional flip-flop on output</td>
<td>252.9K F^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-LUT with configurable depth output register with maximum depth 4</td>
<td>290K F^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-LUT with configurable depth input registers with maximum depth 4</td>
<td>290K F^2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some Numbers (memory)

• Unit of area $= F^2$ ($F=2\lambda$)
• Register as stand-alone element $\approx 1000 F^2$
 – e.g. as needed/used Day 4
• Static RAM cell $\approx 250 F^2$
 – SRAM Memory (single ported)
• Dynamic RAM cell (DRAM process) $\approx 25 F^2$
• Dynamic RAM cell (SRAM process) $\approx 75 F^2$
Retiming Density

- LUT + interconnect $\approx 250K F^2$
- Register as stand-alone element $\approx 1K F^2$
- Static RAM cell $\approx 250 F^2$
 - SRAM Memory (single ported)
- Dynamic RAM cell (DRAM process) $\approx 25 F^2$
- Dynamic RAM cell (SRAM process) $\approx 75 F^2$
- Can have much more retiming memory per chip if put it in large arrays
 - …but then cannot get to it as frequently

Retiming Structure Concerns

- Area: F^2/bit
- Throughput: bandwidth (bits/time)
- Energy

Just Logic Blocks

- Most primitive
 - build flip-flop out of logic blocks
 - $I \leftarrow D*/Clk + I*/Clk$
 - $Q \leftarrow Q*/Clk + I*/Clk$
 - Area: 2 LUTs (200K→250K F^2/LUT each)
 - Bandwidth: 1b/cycle

Separate Flip-Flops

- Network flip flop w/ own interconnect
 - can deploy where needed
 - requires more interconnect
 - Vary LUT/FF ratio
 - Arch. Parameter
 - Assume routing \propto inputs
 - 1/4 size of LUT
 - Area: 50K F^2 each
 - Bandwidth: 1b/cycle

Virtex SRL16

- Xilinx Virtex 4-LUT
 - Use as 16b shiftreg
 - Area: $\approx 250K F^2/16=16K F^2$/bit
 - Does not need CLBs to control
 - Bandwidth: 1b/2 cycle (1/2 CLB)
 - 1/16 th capacity

Register File Memory Bank

- From MIPS-X
 - $250F^2$/bit + 125F^2/port
 - Area(RF) = (d+6)(W+6)(250F^2+ports*125F^2)
Preclass 4

- Complete Table
- How small can get?
- Compare \(w=1, p=8 \) case to input retiming

Input

- More registers (\(K \times \))
 - 2.5K \(F^2/ \text{register+mux} \)
 - 4-LUT \(\rightarrow \) 10K \(F^2/ \text{depth} \)
- No more interconnect than unretimed
 - \textit{open}: compare savings to additional reg. cost
- Area: 1 LUT \((1M+d*10K \ F^2)\) get \(Kd \) regs
 - \(d=4\), 290K \(F^2 \)
 - Bandwidth: \(K/ \text{cycle} \)
 - 1/d th capacity

Preclass 4

- Note compactness from wide words (share decoder)

Xilinx CLB

- Xilinx 4K CLB
 - as memory
 - works like RF
- Area: 1/2 CLB \((160K \ F^2)/16\approx10K \ F^2 / \text{bit} \)
 - but need 4 CLBs to control
- Bandwidth: 1b/2 cycle (1/2 CLB)
 - 1/16 th capacity

Memory Blocks

- SRAM bit \(\approx 300 \ F^2 \) (large arrays)
- DRAM bit \(\approx 25 \ F^2 \) (large arrays)
- Bandwidth: \(W \) bits / 2 cycles
 - usually single read/write
 - 1/2\(A \) th capacity

Dual-Ported Block RAMs

- Virtex-6 Series 36Kb memories
- Stratix-4
 - 640b, 9Kb, 144Kb
- Can put 250K/250=1K bits in space of 4-LUT
 - Trade few 4-LUTs for considerable memory
Dual-Ported Block RAMs

- Virtex-6 Series 36Kb memories
- Stratix-4
 - 640b, 9Kb, 144Kb
- Can put 250K/250=1K bits in space of 4-LUT
 - Trade few 4-LUTs for considerable memory

Hierarchy/Structure Summary

- Big Idea: “Memory Hierarchy” arises from area/bandwidth tradeoffs
 - Smaller/cheaper to store words/blocks
 - (saves routing and control)
 - Smaller/cheaper to handle long retiming in larger arrays (reduce interconnect)
 - High bandwidth out of shallow memories
 - Applications have mix of retiming needs

(Area, BW) → Hierarchy

<table>
<thead>
<tr>
<th></th>
<th>Area (F)</th>
<th>Bw/capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF/LUT</td>
<td>250K</td>
<td>1/1</td>
</tr>
<tr>
<td>netFF</td>
<td>50K</td>
<td>1/1</td>
</tr>
<tr>
<td>XC</td>
<td>10K</td>
<td>1/16</td>
</tr>
<tr>
<td>RFx1</td>
<td>10K</td>
<td>1/100</td>
</tr>
<tr>
<td>FF/RF</td>
<td>1K</td>
<td>1/100</td>
</tr>
<tr>
<td>RP bK</td>
<td>2K</td>
<td>1/100</td>
</tr>
<tr>
<td>SRAM</td>
<td>300</td>
<td>1/10^9</td>
</tr>
<tr>
<td>DRAM</td>
<td>25</td>
<td>1/10^9</td>
</tr>
</tbody>
</table>

Modern FPGAs

- Output Flop (depth 1)
- Use LUT as Shift Register (16)
- Embedded RAMs (9Kb, 36Kb)
- Interface off-chip DRAM (~0.1—1Gb)
- No retiming in interconnect
 - ….yet

Modern Processors

- DSPs have accumulator (depth 1)
- Inter-stage pipelines (depth 1)
 - Lots of pipelining in memory path...
- Reorder Buffer (4—32)
- Architected RF (16, 32, 128)
- Actual RF (256, 512…)
- L1 Cache (~64Kb)
- L2 Cache (~1Mb)
- L3 Cache (10-100Mb)
- Main Memory in DRAM (~10-100Gb)

Admin

- Final out now
 - 1 month exercise
 - Milestone deadlines next two Mondays
- Wednesday Lossless compression?
 - Final assignment + cited papers for Wed?
 - OR Reading for Wednesday on web?
 - Weigh in on feedback sheet
Big Ideas
[MSB Ideas]

• Tasks have a wide variety of retiming distances (depths)
 – Within design, among tasks
• Retiming requirements vary independently of compute, interconnect requirements (balance)
• Wide variety of retiming costs
 – $25 F^2 \rightarrow 250K F^2$
• Routing and I/O bandwidth
 – Big factors in costs
• Gives rise to memory (retiming) hierarchy

Penn EE/CS Group 2012 - [Course]