Due: Wednesday, February 5, 10:00 PM

For all assignments in this class: Writeups must be done in electronic form and submitted through blackboard. Use CAD or drawing tools where appropriate. Handwritten assignments and hand-drawn figures are not acceptable.

You may use hierarchical schematics. Use of a schematic drawing program for circuits is encouraged.

1. Implement $A > B$ out of 2-input NAND gates

 (a) Design the bit slice that takes in $A[i]$, $B[i]$ and two bits from the next more significant bit slice ($i+1$) and produces two bits that communicate to the next less significant bit slice ($i-1$).

 (b) Show how the bit slices compose for 4b unsigned numbers.

2. Using your comparison function from Problem 1, show logic for a combinatorial, gate-level sorting function to sort 4, 4-bit inputs into ascending order.
 (You should be able to do this based on the building blocks discussed on Day 2. This will not involve sequential elements (registers or memories).)

3. Consider all two-input functions. (How many functions are there?)
 For each function, identify if the function is universal. You may tie the inputs of a function to a constant 0 or 1. You may connect the same signal into both gate inputs. Your writeup should be a table, with the following entries for each two-input function:
 - list on-set minterms (i.e. the truth table)
 - logic expression for function
 - universal?
 - explanation of why or why not

4. Counting each gate as unit size, give an upper bound on the size ratio between:
 - an implementation of an arbitrary n-input function that uses only 2-input NOR gates
 - an optimal implementation of the same function when the implementation may use an optimal mixture of the full set of 2-input functions from Problem 3 as gates