Previously

- Identified need for Interconnect
- Seen that interconnect can be expensive
- Identified need to understand/exploit structure in our interconnect design

Today

- Wiring Requirements
- Rent’s Rule
 - A model of structure
- Implications

Wires and VLSI

- Simple VLSI model
 - Gates have fixed size (A_{gate})
 - Wires have finite spacing (W_{wire})
 - Have a small, finite number of wiring layers
 - E.g.
 - one for horizontal wiring
 - one for vertical wiring
 - Assume wires can run over gates

Visually: Wires and VLSI

Preclass 1

- How many $40F \times 40F$ gates in $24,000F \times 24,000F$ region?
- How many wires can go in and out?
- Ratio?
Important Consequence

- A set of wires
- crossing a line
- take up space:
 \[W = \frac{(N \times W_{\text{wire}})}{N_{\text{layers}}} \]

\[W = 7 \ W_{\text{wire}} \]

Thompson’s Argument

- The minimum area of a VLSI component is bounded by the larger of:
 - The area to hold all the gates
 \[A_{\text{chip}} \geq N \times A_{\text{gate}} \]
 - The area required by the wiring
 \[A_{\text{chip}} \geq N_{\text{horizontal}} W_{\text{wire}} \times N_{\text{vertical}} W_{\text{wire}} \]

How many wires?

- We can get a lower bound on the total number of horizontal (vertical) wires by considering the bisection of the computational graph:
 - Cut the graph of gates in half
 - Minimize connections between halves
 - Count number of connections in cut
 - Gives a lower bound on number of wires

Next Question

- In general, if we:
 - Cut design in half
 - Minimizing cut wires
- How many wires will be in the bisection?

Arbitrary Graph

- Graph with N nodes
- Cut in half
 - N/2 gates on each side
- Worst-case?
 - Every gate output on each side
 - Is used somewhere on other side
 - Cut contains N wires
Arbitrary Graph
- For a random graph
 - Something proportional to this is likely
- That is:
 - Given a random graph with N nodes
 - The number of wires in the bisection is likely to be: cN

Particular Computational Graphs
- Some important computations have exactly this property
 - FFT (Fast Fourier Transform)
 - Sorting

Assembling what we know
- $A_{\text{chip}} \approx N \times A_{\text{gate}}$
- $A_{\text{chip}} \approx N_{\text{horizontal}} W_{\text{wire}} \times N_{\text{vertical}} W_{\text{wire}}$
- $N_{\text{horizontal}} = c \times N$
- $N_{\text{vertical}} = c \times N$
 - [bound true recursively in graph]
- $A_{\text{chip}} \approx cN W_{\text{wire}} \times cN W_{\text{wire}}$

Assembling ...
- $A_{\text{chip}} \geq N \times A_{\text{gate}}$
- $A_{\text{chip}} \geq cN W_{\text{wire}} \times cN W_{\text{wire}}$
- $A_{\text{chip}} \geq (cN W_{\text{wire}})^2$
- $A_{\text{chip}} \geq N^2 \times c'$

FFT
- Can implement with $N/2$ nodes
 - Group row together
- Any bisection will cut $N/2$ wire bundles
 - True for any reordering
Result

- $A_{\text{chip}} \geq N \times A_{\text{gate}}$
- $A_{\text{chip}} \geq N^2 \times c'$
- Wire area grows faster than gate area
- Wire area grows with the square of gate area
- For sufficiently large N,
 - Wire area dominates gate area

Preclass 2

- How does ratio change for 96,000 F x 96,000 F region?

Intuitive Version

- Consider a region of a chip
- Gate capacity in the region goes as area (s^2)
- Wiring capacity into region goes as perimeter ($4s$)
- Perimeter grows more slowly than area
 - Wire capacity saturates before gate

Result

- $A_{\text{chip}} \geq N^2 \times c'$
- Wire area grows with the square of gate area
- Troubling:
 - To **double** the size of our computation
 - Must **quadruple** the size of our chip!

First Observation

- Not all designs have this large of a bisection
- What is typical?
Favorite Design Elements

• What are your favorite computing design elements?

• What are the bisection bandwidths for these elements?

Array Multiplier

Shift Register

Architecture ⇔ Structure

• Typical architecture trick:
 – exploit expected problem structure
• What structure do we have?
• Impact on resources required?

Bisection Bandwidth

• Bisection bandwidth of design → lower bound on wire crossings
 – important, first order property of a design.
 – Measure to characterize
 • Rather than assume worst case
• Design with more locality → lower bisection bandwidth
• Enough?

Characterizing Locality

• Single cut does not capture locality within halves
• Cut again → recursive bisection
Regularizing Growth

• How do bisection bandwidths shrink (grow) at different levels of bisection hierarchy?
• Basic assumption: Geometric
 – 1
 – 1/α
 – 1/α^2

Geometric Growth

• F bandwidth at root
• geometric regression α at each level
 – Or growth by α for every doubling

Good Model?

Log-log plot → straight lines represent geometric growth

Rent’s Rule

• In the world of circuit design, an empirical relationship to capture:
 \[IO = c \cdot N^p \]
• 0 ≤ p ≤ 1
• p – characterizes interconnect richness
• Typical: 0.5 ≤ p ≤ 0.7
• “High-Speed” Logic p=0.67

Rent and Locality

• Rent and IO quantifying locality
 – local consumption
 – local fanout

What tell us about design?

• Recursive bandwidth requirements in network
As a function of Bisection

- \(A_{\text{chip}} \geq N \times A_{\text{gate}} \)
- \(A_{\text{chip}} \geq N_{\text{horizontal}} \times W_{\text{wire}} \times N_{\text{vertical}} \times W_{\text{wire}} \)
- \(N_{\text{horizontal}} = N_{\text{vertical}} = IO = cN^p \)
- \(A_{\text{chip}} \geq (cN)^{2p} \)
- If \(p < 0.5 \)
 \(A_{\text{chip}} \propto N \)
- If \(p > 0.5 \)
 \(A_{\text{chip}} \propto N^{2p} \)

In terms of Rent’s Rule

- If \(p < 0.5 \), \(A_{\text{chip}} \propto N \)
- If \(p > 0.5 \), \(A_{\text{chip}} \propto N^{2p} \)
- Typical designs have \(p > 0.5 \)
 \(\rightarrow \) interconnect dominates

What tell us about design?

- Recursive bandwidth requirements in network
 - lower bound on resource requirements
- N.B. necessary but not sufficient condition on network design
 - I.e. design must also be able to use the wires

Capacity Impact

- Rent: \(IO=C^*N^p \)
 - \(p > 0.5 \)
 - \(A = C^*N^{2p} \)
 - \(N=(A/C)^{1/(2p)} \)
 - Logical Area \(\propto (1/S)^2 \)
 - \(N'=(1/(1/S)^2A/C)^{1/(2p)} \)
 - \(N'=(A/C)^{1/(2p)} \times (1/(1/S)^2)^{1/(2p)} \)
 - \(N'=N \times (1/S)^{1/(1p)} \)
 - \(N'=N \times (1/S)^{1/p} \)
 - Sanity Check
 - \(p=1 \)
 - \(N_2 = N/S \)
 - \(p=0.5 \)
 - \(N_2 = N/S^2 \)

What tell us about design?

- Interconnect lengths
 - Intuition
 - if \(p > 0.5 \), everything cannot be nearest neighbor
 - as \(p \) grows, so wire distances

Can think of \(p \) as dimensionality: \(p=1-1/d \)

Preclass 5

- 24,000 F side, 40F \(\times \) 40 F gates
- Wire length?
Preclass 5

• What’s minimum length for longest wires?

Generalizing Interconnect Lengths

• $P > 0.5$
• Side is \sqrt{N}
• IO crossing it is N^p
• What’s minimum length for longest wires?
• Implication:
 – Wire lengths grow at least as fast as $N^{(p-0.5)}$

$BW = N^p$

Scaling → Delays

• Logical capacities on chip growing
• Wirelengths?
 – No locality \times chip-side = 1/S
 – Rent’s Rule
 • $L \propto N^{(p-0.5)}$
 • $[p>0.5]$

What tell us about design?

• IO $\propto N^p$
• Bisection BW $\propto N^p$
• side length $\propto N^p$
 – N if $p<0.5$
• Area $\propto N^{2p}$
 – $p>0.5$
• Average Wire Length $\propto N^{(p-0.5)}$
 – $p>0.5$

Rent’s Rule Caveats

• Modern “systems” on a chip – likely to contain subcomponents of varying Rent complexity
• Less I/O at certain “natural” boundaries
• System close
 – Rent’s Rule apply to workstation, PC, MP3 player, Smart Phone?

N.B. 2D VLSI world has “natural” Rent of $P=0.5$
(area vs. perimeter)

Area/Wire Length

• Bad news
 – Area $\sim \Omega(N^{2p})$
 • faster than N
 – Avg. Wire Length $\sim \Omega(N^{(p-0.5)})$
 • grows with N
• Can designers/CAD control p (locality) once appreciate its effects?
• I.e. maybe this cost changes design style/criteria so we mitigate effects?
What Rent didn’t tell us

- Bisection bandwidth purely geometrical
- No constraint for delay
 - i.e. a partition may leave critical path weaving between halves

Critical Path and Bisection

Minimum cut may cross critical path multiple times. Minimizing long wires in critical path → increase cut size.

Preclass 6

- How many gates reachable with 800F of wiring?
- How many gates reachable with 1600F wiring?

Preclass 7

- Depth 20 circuit, 2-input gates
 - Maximum number of gates?
 - Topology?
 - Minimum distance?
 - Lower bound maximum wire length?
- Depth 24 circuit
 - Lower bound maximum length?

“Closeness”

- Try placing “everything” close

<table>
<thead>
<tr>
<th>Manhattan Distance</th>
<th>Places</th>
<th>Transitive Fanin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>44(4)</td>
<td>4(4)</td>
</tr>
</tbody>
</table>
Original Memo

• Winter 2010, v2n1 issue of IEEE Solid-State Circuits Magazine
• Retrospect on IBM 1401 and E. F. Rent
 – Including original memos
• Linked Supplemental Reading

Big Ideas
[MSB Ideas]

• Rent’s rule characterizes locality
 Fixed wire layers:
 \[\text{Area growth } \Omega(N^p) \]
 \[\text{Wire Length } \Omega(N^{p-0.5}) \]
• \(p>0.5 \) → interconnect growing faster than compute elements
 – expect interconnect to dominate other resources

Admin

• HW6 due Today
• HW7 out
• Reading for Monday on web