ESE534:
Computer Organization

Day 17: March 31, 2014
Interconnect 3: Richness

Last Time

- Rent’s Rule
 - And its implications
- Superlinear growth rate of interconnect
 \(p > 0.5 \)
 \(\Rightarrow \) Area growth \(\Omega(N^{2p}) \)

Today

- How rich should interconnect be?
 - specifics of understanding interconnect
 - methodology for attacking these kinds of questions

Now What?

- There is structure (locality)
- Rent characterizes locality
 - How rich should interconnect be?
 - Allow full utilization of compute units?
 - What is most area efficient?
 \(\Rightarrow \) Need to model requirements and area impact

Preclass 1

- Max wire count?

Preclass 1

- Max wire count?
Preclass 1

• Max wire count?

Step 1: Build Architecture Model

• Assume geometric growth
• Pick parameters: Build architecture can tune
 • C
 • p

Tree of Meshes

• Natural model is hierarchical
• Restricted internal bandwidth
• Can match to model

Parameterize Growth by p

• What are IO schedules? (preclass 2)

Parameterize C

Preclass 4

• What are IO schedules according to Rent for particular p’s?
 – p=1/2
 – p=2/3
 – p=3/4

IO = c N^p
Parameterize p

- What is p for each network? (preclass 5)

Step 2: Area Model

- Need to know effect of architecture parameters on area (costs)
 - focus on dominant components
 - wires
 - switches
 - logic blocks(?)

Area Parameters

- $A_{\text{logic}} = 10K \text{ } F^2$
- $A_{\text{sw}} = 625 \text{ } F^2$
- Wire Pitch = 4 F

Switchbox Population

- Full population is excessive (next lecture)
- Hypothesis: linear population adequate
 - still to be (dis)proven

“Cartoon” VLSI Area Model

(Example artificially small for clarity)
Larger “Cartoon”

Effects of P on Area

Effects of P on Capacity

Step 3: Characterize Application Requirements
- Identify representative applications.
 - Today: IWLS93 logic benchmarks
- How much structure there?
- How much variation among applications?

Application Requirements

Benchmark Wide
Benchmark Parameters

Complication
- Interconnect requirements vary among applications
- Interconnect richness has large effect on area
- What is effect of architecture/application mismatch?
 - Interconnect too rich?

Interconnect too poor?
- Consider 4 unrelated 2-LUTs
- Can I put them into a subtree of size 4?

Interconnect too poor?
- Consider 4 unrelated 2-LUTs
- How many unrelated LUTs can I put in a subtree of size 4?

Interconnect too poor?
- Consider 4 unrelated 2-LUTs
- What is the smallest subtree I could put them in?

Interconnect too poor?
- In general, what happens if the interconnect is too poor?
Interconnect Mismatch in Theory

Step 4: Assess Resource Impact
- Map designs to parameterized architecture
- Identify architectural resource required

Compare: mapping to k-LUTs; LUT count vs. k.

Mapping to Fixed Wire Schedule
- Easy if need fewer wires than Net
- If need more wires than net, must depopulate to meet interconnect limitations.

Preclass 3
- Smallest Network that Top graph fits on?

Mapping to Fixed-WS
- Better results if “reassociate” rather than keeping original subtrees.

Preclass 3
- Smallest Network that Middle graph fits on?
Middle vs. Top

Observation

• Don’t really want a “bisection” of LUTs
 – subtree filled to capacity by either of
 • LUTs
 • root bandwidth
 – May be profitable to cut at some place other than midpoint
 • not require “balance” condition
 – “Bisection” should account for both LUT and wiring limitations

Preclass 3

• Smallest Network that Bottom graph fits on?

Challenge

• Not know where to cut design
 – not knowing when wires will limit subtree capacity

Middle vs. Bottom

Brute Force Solution

• Explore all cuts
 – start with all LUTs in group
 – consider “all” balances
 – try cut
 – Recurse

• Viable?
Brute Force

- Too expensive
- Exponential work
- …viable if solving same subproblems

Simplification

- Single linear ordering
- Partitions = pick split point on ordering
- Reduce to finding cost of [start, end] ranges (subtrees) within linear ordering
- Only n^2 such subproblems
- Can solve with dynamic programming

Dynamic Programming

- Just one possible “heuristic” solution to this problem
 - not optimal
 - dependent on ordering
 - sacrifices ability to reorder on splits to avoid exponential problem size
- Opportunity to find a better solution here...

Ordering LUTs

- Another problem
 - lay out gates in 1D line
 - minimize sum of squared wire length
 - tend to cluster connected gates together
 - Is solvable mathematically for optimal
 - Eigenvector of connectivity matrix
- Use this 1D ordering for our linear ordering

Mapping Results

Step 5: Apply Area Model

- Assess impact of resource results
Resources × Area Model ⇒ Area

Net Area

Picking Network Design Point

What about a single design?

LUT Utilization predict Area?

Methodology

1. Architecture model (parameterized)
2. Cost model
3. Important task characteristics
4. Mapping Algorithm
 - Map to determine resources
5. Apply cost model
6. Digest results
 - Find optimum (multiple?)
 - Understand conflicts (avoidable?)
Big Ideas
[MSB Ideas]

• Interconnect area dominates logic area
• Interconnect requirements vary
 – among designs
 – within a single design
• To minimize area
 – focus on using dominant resource
 (interconnect)
 – may underuse non-dominant resources (LUTs)

Big Ideas
[MSB Ideas]

• Two different resources here
 – compute, interconnect
• Balance of resources required varies among
designs (even within designs)
• Cannot expect full utilization of every
 resource
• Most area-efficient designs may waste some
 compute resources (cheaper resource)

Admin

• HW5.2 graded
• HW8 out
• HW7 due Wed.
• Reading for Wednesday online