Previously

- Saw
 - need to exploit locality/structure in interconnect
 - a mesh might be useful
 - Rent’s Rule as a way to characterize structure

Today

- Mesh:
 - Channel width bounds
 - Linear population
 - Switch requirements
 - Routability
 - Segmentation
 - Clusters

Mesh

Street Analogy

Manhattan

Mesh

switchbox
Mesh

- Strengths?

Mesh Channels

- Lower Bound on \(w \)?
 - Bisection Bandwidth
 - \(BW \propto N^p \)
 - channels in bisection \(\propto N^{0.5} \)
 - \(W \propto \frac{N^p}{\sqrt{N}} = N^{(p-0.5)} \)
 - Channel width grows with \(N \).

Straight-forward Switching Requirements

- Total Switches?
- Switching Delay?

Switch Delay

- Switching Delay:
 - Manhattan distance
 - \(|X_i - X_j| + |Y_i - Y_j|\)
 - \(2 \sqrt{(N_{\text{subarray}})}\)
 - worst case:
 - \(N_{\text{subarray}} = N \)

Total Switches

- Switches per switchbox:
 - \(4 \times (3w \times w)/2 = 6w^2 \)
 - Bidirectional switches
 - \((N \rightarrow W \text{ same as } W \rightarrow N) \)
 - double count

- Switches into network:
 - \((K+1)w \)

- Switches per PE:
 - \(6w^2 + (K+1)w \)
 - \(w = cN^{p-0.5} \)
 - Total \(\propto w^2 \times N^{2p-1} \)
- Total Switches: \(N \times (\text{Sw}/\text{PE}) \propto N^{2p} \)
Routability?

- Asking if you can route in a given channel width is:
 - NP-complete
- Contrast with Beneš, Beneš-crossover tree….

Linear Population Switchbox

Traditional Mesh Population: Linear

- Switchbox contains only a linear number of switches in channel width

Linear Mesh Switchbox

- Each entering channel connect to:
 - One channel on each remaining side (3)
 - 4 sides
 - W wires
 - Bidirectional switches
 - (N→W same as W→N)
 - double count
 - 3×4×W/2=6W switches
 - vs. 6w² for full population

Total Switches

- Switches per switchbox:
 - 6w
- Switches into network:
 - (K+1) w
- Switches per PE:
 - 6w +(K+1) w
 - w = cN^p-0.5
 - Total = N^p-0.5
- Total Switches: N×(Sw/PE) = N^p+0.5 > N

Total Switches (linear population)

- Total Switches
 - ∝ N^p+0.5
 - N < N^p+0.5 < N^2p
- Switches grow faster than nodes
- Wires grow faster than switches
Checking Constants (Preclass 3)
When do linear population designs become wire dominated?
• Wire pitch = 4 F
• switch area = 625 F^2
• wire area: (4w)^2
• switch area: 6x625 w
• Crossover?

Checking Constants: Full Population
Does full population really use all the wire physical tracks?
• Wire pitch = 4F
• switch area = 625 F^2
• wire area: (4w)^2
• switch area: 6x625 w^2
• effective wire pitch: 60F
 ~15 times pitch

Practical
• Full population is always switch dominated
 – doesn’t really use all the potential physical tracks
 – …even with only two metal layers
• Just showed:
 – would take 15x Mapping Ratio for linear population to take same area as full population (once crossover to wire dominated)
• Can afford to not use some wires perfectly
 – to reduce switches (area)

Diamond Switch
• Typical linear switchbox pattern:
 – Used by Xilinx

Mapping Ratio?
• How bad is it?
• How much wider do channels have to be?

Mapping Ratio
• Empirical:
 – Seems plausibly, constant in practice
• Theory/provable:
 – There is no Constant Mapping Ratio
 • At least detail/global
 – can be arbitrarily large!
Domain Structure

- Once enter network (choose color) can only switch within domain

Detail Routing as Coloring

- Global Route channel width = 2
- Detail Route channel width = N
 - Can make arbitrarily large difference

Routing

- Lack of detail/global mapping ratio
 - Says detail can be arbitrarily worse than global
 - Doesn’t necessarily say domain routing is bad
 - Maybe can avoid this effect by changing global route path?
 - Says global not necessarily predict detail
 - Argument against decomposing mesh routing into global phase and detail phase
 - Modern FPGA routers do not
 - VLSI routers and earliest FPGA routers did

Buffering and Segmentation

Buffered Bidirectional Wires
Segmentation

- To improve speed (decrease delay)
- Allow wires to bypass switchboxes
- Maybe save switches?
- Certainly cost more wire tracks

Segmentation

- Segment of Length L_{seg}
 - 6 switches per switchbox visited
 - Only enters a switchbox every L_{seg}
 - SW/sbox/track of length $L_{seg} = 6/L_{seg}$

Segmentation

- Reduces switches on path $\sqrt{N/L_{seg}}$
- May get fragmentation
- Another cause of unusable wires

Segmentation: Corner Turn Option

- Can you corner turn in the middle of a segment?
- If can, need one more switch
- SW/sbox/track = $5/L_{seg} + 1$
Delay of Segment

\[T_{\text{seg}} = T_{\text{sw}} + \left(L_{\text{seg}} \right)^2 \times R_{\text{seg}} \times C_{\text{seg}} \]

Segment R and C

\[T_{\text{seg}} = T_{\text{sw}} + \left(L_{\text{seg}} \right)^2 \times R_{\text{seg}} \times C_{\text{seg}} \]

Preclass 4

• Fillin Tseg table together.

Preclass 4

• What \(L_{\text{seg}} \) minimizes delay for:
 • Distance=1?
 • Distance=2?
 • Distance=6?
 • Distance=10?
 • Distance=20?

VPR \(L_{\text{seg}} = 4 \) Pix

VPR \(L_{\text{seg}} = 4 \) Route
Effect of Segment Length?

- Experiment with on HW9

C-Box Depopulation

- Not necessary for every input to connect to every channel
- Saw last time:
 - $K \times (N-K+1)$ switches
- Maybe use fewer?

IO Population

- Toronto Model
 - F_c fraction of tracks which an input connects to
- IOs spread over 4 sides
- Maybe show up on multiple
 - Shown here: 2

Clustering
Leaves Not LUTs

- Recall cascaded LUTs
- Often group collection of LUTs into a Logic Block

Logic Block

What does clustering do for delay?

Delay versus Cluster Size

[Lu et al., FPGA 2009]

Area versus Cluster Size

[Lu et al., FPGA 2009]

Review: Mesh Design Parameters

- Cluster Size
 - Internal organization
- LB IO (Fc, sides)
- Switchbox Population and Topology
- Segment length distribution
 - and staggering
- Switch rebuffering

Big Ideas

[MSB Ideas]

- Mesh natural 2D topology
 - Channels grow as $\Omega(N^{2.5})$
 - Wiring grows as $\Omega(N^{2.5})$
 - Linear Population:
 - Switches grow as $\Omega(N^{2.5})$
 - Worse than shown for hierarchical
 - Unbounded global-detail mapping ratio
 - Detail routing NP-complete
 - But, seems to work well in practice…
Admin

- HW8 due Wednesday
- HW9 out
- Reading for Wednesday on web