
ESE680-002 Spring 2007

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE680-002, Spring 2007Assignment 2: Space-Time Multiply Wed., Jan. 17

Due: Monday, January 29, 12:00pm

Everyone should do all problems.

We saw in lecture how to build various adders. In this problem, We’re asking you to review
or develop various techniques for building multipliers.

• Give latency and area in terms of the operand bitwidth, w. (we’ll take asymptotic anal-
ysis, or you can use symbolic constants in terms of primitive gates such as Tfulladderslice,
Tand2)

• When asked to draw an implementation or provide microcode, you may show the w = 4
case. You may use hierarchical schematics.

1. Show a w × w spatial multiplier built out of simple, ripple-carry adders.

• What is the area and latency?

2. Let’s consider an alternate technique that uses the same full adder bitslice as in the
previous ripple-carry adder design, but which wires up the carries differently. [This
technique is known as delayed addition.]

FAFA FAFA

A[3] B[3] C[3] A[2] B[2] C[2] A[1] B[1] C[1] A[0] B[0] C[0]

S0[0]S1[1] S0[1]S0[2]S1[2]S0[3]S1[3]S0[4]

Here, A and B will be your normal two inputs to the adder. S0 and S1 together store
the sum.

(a) What is the latency of a single w-bit delayed addition?

(b) How can the C input to the delayed adder be used?

(c) Use these delayed-addition adders to build a spatial multipler. The two input-
operands to the adder are in standard form. Output values are represented as
two numbers (i.e. S0, S1 form shown above). Show the resulting, spatial multi-
plier which starts with numbers in standard form, but uses these delayed adders
internally.

1

ESE680-002 Spring 2007

(d) What do you need to do to the multiplier output to convert the result back into
normal form? (Hint: Remember, S0 and S1 jointly encode the final result) Can
we further reduce the latency of the multiplier? (i.e. How do we implement the
final format conversion efficiently?)

(e) What is the final area and latency of this multiplier?

3. Continuing to the use full-adder bitslice used above, wire them up as an associative
reduce tree to compute the result of the multiplication from all the bit-wise partial-
products (ai ∧ bj).

(a) How many partial-product bits do you start with?

(b) What reduction do you get with a single stage of full adders?

(c) How deep is the full reduce tree?

(d) Show the resulting multipler.

(e) What is the final area and latency of this multiplier?

4. Write µcode to implement: C = (A × B). For the datapath provided (see end of
assignment).

(a) Don’t worry about writing any special code for overflow. Just show the basic
computation code for the multiply.

(b) Turnin your microcode for multiplication

(c) What is the area and latency for this multiplier (assume the datapath is widenned
with w; give latency in the same units as before (not in cycles, but in time))?

• Assume the ALU datapath limits cycle time.

• Reason about the latency required for each of the operations the ALU provides
(see table below).

5. Consider modifying the datapath from the previous problem so that it uses the delayed
addition introduced above in place of normal addition/subtraction for all add-related
operations in the ALU.

(a) Describe how the datapath would need to change. (we are not asking for the
implementation; just write text and, if appropriate, provide a diagram.)

(b) What impact would this have on the datapath cycle time? (under what situations
would this be beneficial?)

(c) What is the area and latency for this multiplier?

• assume the datapath is widenned with w

• assume the ALU datapath limits cycle time.

• reason about the latency required for each of the operations the ALU provides
(see table below).

• give latency in the same units as before (not in cycles, but in time)); so think
both about the number of cycles and the ALU cycle time.

2

ESE680-002 Spring 2007

• Your µcode may need to change to exploit this datapath change; you do
not need to provide code for this case, but you will need to sketch out the
implementation enough to justify your latency answer above.

6. Fillin the following table from your area/latency answers to the problems above:

Design Area Latency

P1: Ripple-Carry Based
P2: Delayed-Addition Based

P3: Associative Reduce Delayed-Addition
P4: µcoded

P5: µcoded using Delayed Addition

3

ESE680-002 Spring 2007

Simple Branching Processor Datapath

aluop

write

input

output

address_input

program_counter

PC

D
ec

od
e

op

in1 in2

out

writep

dst

ALU

Register
 File

In
st

ru
ct

io
n

 S

to
re

clock

nextPC ifetch idecode rf_read rf_writeeval

Control

branch_addr

op
branch

test

branch branch_addr

BU

reset

dst

src2

src1

dst

src2

src1

The basic processor organization is as shown above. Non-branching instructions are of the
form:

bits 13:10 9 8:6 5:3 2:0
field op w src1 src2 dst

• op – operation to be performed (typically by ALU)
• w – write back ALU output to register file? (1=yes, 0=no)
• src1 – address of first ALU operand in register file
• src2 – address of second ALU operand in register file
• dst – address in register file into which the result should be sotred

For branch operations, the branch addr is the low 6 bits of the instruction; that is, it is in
the same place we would have placed src2 and dst in a normal, ALU operation.

bits 13:10 9 8:6 5:0
field BNZ 0 src1 branch addr

4

ESE680-002 Spring 2007

Generally, on each cycle the processor performs:

op,w,src1,src2,dst = instruction store[pc]
...,branch addr = instruction store[pc]
in1=register file[src1]
in2=register file[src2]
if (w==1)

register file[dst]←(in1 op in2)
if ((op==BNZ) && (in1!=0))

pc←branch addr
else

pc←pc+1

A special “done” operation indicates the computation is done and the program counter
should stop incrementing. A reset signal tells the program counter to set its value to zero
and begin computation.

The following ops are defined:

aluop operation

ADD dst← src1+src2
INV dst← ∼(src1)
SUB dst← src1-src2
XOR dst← src1∧src2

OR dst← src1—src2
INCR dst← src1+1
AND dst← src1&src2
BNZ if (src1!=0) pc←branch addr
SRA dst← src1>>1; dst[31]=src1[31]
SRL dst← src1>>1; dst[31]=0
SLA dst← src1<<1
SLL dst← src1<<1

DONE stop execution

5

