
ESE680-002 Spring 2007

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE680-002, Spring 2007 Final Exercise Wednesday, April 4

Due: Friday, May 4, 5:00pm

1 Setup

You are a recent hire at Variable Bitwidth Design (VBD). VBD has been building customized
programmable components in the (c,w)-design space discussed in ESE680-002 (Day 9, Chap-
ters 8 and 9 of [1]). To date, they have a product catalog of 100 different components
corresponding to power of two c and w values from 1 to 1024.

With the rising costs of masks, it is getting difficult to maintain 100 different designs. Fur-
ther, some customers complain that their applications actually have a mixed of throughput
(Path Length, lpath) and SIMD datapath width (wapp) requirements and are poorly served
by any of VBD’s products.

Consequently, you have been asked to assess the opportunity for VBD to design a new Robust
Arbitrary Bitwidth (RAB) array that might subsume all the of the existing designs.

You will recall from the Day 9 lecture, that if a single variable is matched in the design (e.g.
warch = wdes or c = lpath it is possible to pick a robust design point for the other variable (c
or warch, respectively) such that the architecture is over 50% efficient across all designs (all
values of lpath or warch). So, you know it would be possible to reduce VBD’s 100 design points
to 10 designs that would be within a factor of 2 in area of the full 100 designs. However,
that would not address the needs of customers with mixed design requirements. You will
also recall that it was not clear how to pick such a robust design point across the entire (c,w)
space.

Your boss suggests that the trick is to follow the robust design point allocation strategy, but
find a way to make the instruction organization flexible. In particular, rather than hard-
wiring the width, w, provide configurable instruction distribution, allowing one bit operator
to use its c pinst’s for itself, or combine its c pinsts with w′ neighboring operators, such that
they all execute the same pinst on each cycle, but together have an effective c′ = c ·w′ pinsts.
The RAB design should allow w′ to take on any power of two between 1 and some architected
maximum value (e.g. 1024). While discussing this over lunch, one colleague sketched out
the configurable instruction distribution tree shown in Figure 1, and another sketched out
the variant in Figure 2 and following.

The configuration of w′ (the w′’s) ultimately becomes an instruction distribution problem
as well. Do we make this static configurable (at a different level than the cycle-by-cycle
pinsts)? or do we broadcast w′ configurations? Are all mixes of w′’s sensible? As a starting

1

ESE680-002 Spring 2007

assumption, assume there is a single configuration for w′’s, and they can differ across the
array. The bitwidth configurations are loaded first, before the pinsts.

2 Assignment Goals

This assignment is intended to capture the major themes in the course, encourage you to
integrate some of the pieces you’ve been studying as independent components, and give you
an opportunity to spend some time working on a more open-ended problem in this domain.
As such, the assignment is divided into three parts along this theme.

1. estimate implementation costs from a basic description

2. establish/quantify tradeoffs based on estimation

3. critique and optimize the design

This is deliberately an attempt to identify a “different” opportunity to explore (MATRIX
[3] explored this theme, but not in as fine-grained a manner as suggested here). The starting
design point you are given is based on a modest amount of thinking, but it may have some
aspects which are nonsensical. The methodology in parts 1 and 2 should be clear from
the course. For part 3, we [andre,nachiket] definitely don’t know the answers; however, we
believe there are rich things to spend some time thinking about using the intellectual tools
from the course.

This is an individual assignment. Work alone. Consult the TA or instructor as you need
clarification.

3 Design Point

The base VBD parameterized array is as follows:

• Compute operator is a 4-LUT with cascaded 5th input which runs down the columns
of the array. The setup is similar to the cascaded 4-LUT in assignment 4. However,
they use the parallel-prefix LUT cascade option discussed on Day 12 so that the gate
delays in an n-bit cascade scale as log(n).

• Interconnect is a MoT interconnect (Day 18, [2]) with p = 0.5, C = 8, arity=2. The
input selection portion of the C-box is densely encoded.

• Retiming is HSRA input style (Day 20, [4]) with a depth of 4. The retiming depth
selection is densely encoded.

2

ESE680-002 Spring 2007

In the original VBD design, when an array is built for a particular w, w adjacent elements
along a column are grouped together; an instruction bus distributes the same pinst to all w
bit operations from a single instruction store of depth c.

VBD builds subarrays up to size 1024×1024, then tiles multiple subarrays onto a chip.
Each subarray has its own controller (e.g. FSM) which feeds array-wide addresses into the
subarray. Cascades are never longer than 1024.

For your design, the suggestion is to keep SIMD grouping along columns as in the original
design. However, instruction storage will be distributed with the bit operators so it can be
used individually in the w′ = 1 case.

4 Technology Parameters

Abit SRAM bit for Instruction Store 1,000 λ2

Aretime one retiming register with mux 10,000 λ2

Acmtx Compose Mux Transform for cascade 12,000 λ2

A2:1 2:1 mux 5,000 λ2

A16:1 16:1 mux 20,000 λ2

Aswitch bidirectional switch (no configuration mem) 2,000 λ2

Aor2 2-input or gate 2,000 λ2

Aand2 2-input and gate 2,000 λ2

Ainv inverter 1,000 λ2

5 Questions

As always, state necessary assumptions. Be clear about the design you are evaluting. There
are certainly multiple interpretations of the sketch given in Section 3.

1. Build area models for the base design. [30pts total]

(a) [10] Write an equation for the area of the bit operator in the base design ex-
cluding instruction memory. This should use symbolic constants for technology
parameters and design parameters (this will be the same for any (c,w) design
point). Definitely be clear about the design assumptions you are making in order
to write this equation.

(b) [2] Using the design and technology parameters given above, calculate the area
of the bit operator above.

(c) [5] Identify the pinst for the bit operator (again, same for all design points); give
a table showing logic fields and bits.

(d) [1] Identify the area required to store one pinst.

(e) [5] Identify the 10 robust design points for the original VBD design (i.e. give
robust point for wdes = wapp = {1, 2, 4, ...1024}.

3

ESE680-002 Spring 2007

(f) [5] Write an equation for the area per bit operator for the proposed instruction
distribution scheme, including the memory matching. This should use symbolic
constants for technology parameters. Definitely be clear about the design assump-
tions you are making in order to write this equation; the figures in the assignment
refer to multiple design points (and each of those is, potentially, incomplete).

(g) [2] Using the technology parameters given above, calculate the area per bit oper-
ator of the instruction-distribution scheme.

2. Identify the costs and benefits of the RAB design. [30pts total]

(a) [6] Develop an equation for the efficiency of the RAB design point across homoge-
neous application space. The reference design at each point will be the optimally
matched (c,w) VBD design without flexible instruction distribution.

(b) [4] Plot this efficiency across the original VBD design space (powers of two 1 to
1024 in each c and w).

(c) Consider an application where 50% of the design requires wapp = 1, Lpath = 1,
and 50% requires wapp = 64, Lpath = 1024.

i. [6] Develop an equation for the efficiency of an original, homogeneous VBD
designs (in terms of c and w) versus an optimal, heterogeneous design (i.e.
half bitops have c = 1, w = 1 to match half of application, other half have
c = 1024, w = 64 to match other half).

ii. [4] Plot the efficiency across (c,w) space.

iii. [2] Identify and report the design point and efficiency achieved for the homo-
geneous design point which is most efficient for this mixed application.

iv. [8] Calculate the efficiency of the RAB design for this application. Reference
remains the optimal heterogeneous design.

3. Critique and Optimize the design. [40pts total]
Pick one of the open-ended design questions below and analyze. Quantitative analysis
with equations, areas, and perhaps delays is encouraged.

• Propose and analyze a better (more efficient) scheme for flexible instruction dis-
tribution. Timing analysis, in addition to area analysis, will be a must.

• The tree instruction distribution scheme supports widths which are powers of two.
Develop and analyze a scheme that supports arbitrary w′. Timing analysis, in
addition to area analysis, will be a must.

• Given where the MoT bits land within the bit operators, what happens to the
column MoT dimension in SIMD mode? What does this do to communication
within a column? How can we redesign the column interconnect (or instruction
coding sharing) to make this more reasonable?

• Can we mix different width configurations on a cycle-by-cycle basis? Explain
architectural modification (or clarifications) necessary (if any) and usage rules.
Give examples.

4

ESE680-002 Spring 2007

• Propose and analyze a better retiming design for the RAB design. Analysis here
should consider robustness to various retiming profiles.

• Identify an application kernel that would exploit this flexibility and work out
a mapping; report any lessons from the application mapping that might guide
further improvements of the architecture.

• Identify something else that is problematic with the baseline architecture used in
this flexible instruction distribution manner, and propose and analyze a better
solution. [If you choose this: please run the idea by us no later than April 27th
so we can give you feedback/guidance.]

You may answer more than one question, and the additional answers will be considered
for extra credit. However, answering one question in depth is better than
giving mediocre answers to any number of questions; so, do not use this option
to give shallow answers to questions. The primary goal of question 3 is for you to put
substantial thought and analysis into a focused technical issue.

References

[1] André DeHon. Reconfigurable Architectures for General-Purpose Computing. AI Techni-
cal Report 1586, MIT Artificial Intelligence Laboratory, 545 Technology Sq., Cambridge,
MA 02139, October 1996.

[2] André DeHon and Raphael Rubin. Design of FPGA Interconnect for Multilevel Metaliza-
tion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(10):1038–
1050, October 2004.

[3] Ethan Mirsky and André DeHon. MATRIX: A Reconfigurable Computing Architecture
with Configurable Instruction Distribution and Deployable Resources. In Proceedings of
the IEEE Symposium on FPGAs for Custom Computing Machines, April 1996.

[4] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony Tung, Omid
Rowhani, Varghese George, John Wawrzynek, and André DeHon. HSRA: High-Speed,
Hierarchical Synchronous Reconfigurable Array. In Proceedings of the International Sym-
posium on Field-Programmable Gate Arrays, pages 125–134, February 1999.

5

ESE680-002 Spring 2007

parent

crossover
left child

right child

left child

right child

crossover

parent
Instruction
 Stores

 Bit
Operatorsbaddr

if (((baddr>>clen) & wmask)
 == (myaddr & wmask))
 imem[baddr&cmask]
else
 0

myaddr=0

myaddr=1

myaddr=2

myaddr=3

clen=ceil(log2(c))

wmask=2 −1
w’

log2(w’)=this level
(could be single config bit
 local to each down mux)

cmask=2 −1
c

Figure 1: or-based Configurable Instruction Distribution Tree

6

ESE680-002 Spring 2007

64

64

pinst
memory

column
of PEs

C

signal flow

Instruction ’pinst’ distribution network ’pinst’

Figure 2: Mux-based Configurable Instruction Distribution Tree

pinst
memory

column
of PEs

C

instruction flow

W=2

pinst
memory

column
of PEs

C

instruction flow

W=4

w

w

Figure 3: Example configuration for Mux-based Configurable Instruction Distribution Tree

w=2, cycle=0

in
st

ru
ct

io
n

se
qu

en
ce

r

pinst memory

PEs

instruction
distribution

network

in
st

ru
ct

io
n

se
qu

en
ce

r

pinst memory

PEs

instruction
distribution

network

w=2, cycle=1

Figure 4: Cycle-by-cycle example of Mux-based Configurable Instruction Distribution Tree

7

ESE680-002 Spring 2007

in
st

ru
ct

io
n

se
qu

en
ce

r

pinst memory

PEs

instruction
distribution

network

Figure 5: Control of Mux-based Configurable Instruction Distribution Tree

8

