
ESE680-002 Spring 2007

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE680-002, Spring 2007 Assignment 3: Instructions Monday, January 29

Due: Wednesay, February 7, 12:00pm

Everyone should do problems 1–5. You should use a drawing program for datapaths (where
appropriate).

1. Consider a simple, sequential, non-branching, programmable datapath with a single
one-bit output computational unit. For this problem consider two possible functional
units: a 3-input nand and a 3-input LUT. Now, let us consider implementing a 16-
input parity function (xor16) on each of these programmable datapaths.

• Datapath should be universal; that is it should still be possible to compute any
function using this datapath.

(a) Draw your datapth for each case.

(b) Define the primitive instruction (pinst) for each of the units (what bits are in-
cluded, what do they do, how many of each).

(c) How many instruction bits are required to specify the computation for each in-
struction in the two cases?

(d) How many instruction cycles will it take to implement the parity function in each
of these cases? (show assembly to support)

(e) How many total operation instruction bits in memory are required to describe
this operation in each case?

1

ESE680-002 Spring 2007

2. Consider the branching datapath shown at the end of the assignment (basically unch-
naged from the previous assignment). Concretely, consider the datapath width to be
16. Implement code to compute the parity of a 16b word in two cases:

(a) Using no branching operations, attempting to minimize compute cycles.

(b) Using branching operations, attempting to minimize instructions.

For each case:

• provide assembly code

• report cycles to perform the computation

• report instructions required to describe the computation

3. Continue considering the datapath and 16b word parity operation from Problem 2.
Add an instruction to the datapath that computes this parity.

• How many gates does this addition require?

(a) instruction decoding

(b) logic

(c) datapath multiplexing

– count 2-input gates; for concreteness, you may assume the ALU bitslice shown
in class as starting point (though it may not quite support the existing oper-
ations assumed)

• Assuming each gate takes 2500λ2 and each instruction bit takes 1200λ2, report
the area difference (savings or addition) resulting from adding this operation to
the datapath compared to the implementation in Problem 2 with the fewest in-
structions.

2

ESE680-002 Spring 2007

4. Continuing to consider the 16b parity and the base datapath, explore the impact on
cycles and instruction compactness of changing the datapath to support 2 or 1 register
operations.

(a) base case is the existing datapath. i.e. 2 source registers and one destination
register in each instruction: rdst = rsrc1 op rsrc2 [so, no new coding here, just
fillin your results from Problem 3 in the summary table requested below.]

(b) 2 register instruction: rdst = rsrc op rdst (allow overwrite in single instruction
with operation)

(c) 1 operand/instruction: accum = accum op rsrc (see new 1-operand ALU operation
table below)

aluop operation

ADD accum← accum+rsrc
INV accum← ∼(accum)
SUB accum← accum-rsrc
XOR accum← accum∧rsrc

OR accum← accum|rsrc
INCR accum← accum+1
AND accum← accum&rsrc
BNZ if (src1!=0) pc←branch addr
SRA accum← accum>>1; accum[31]=accum[31]
SRL accum← accum>>1; accum[31]=0
SLA accum← accum<<1
SLL accum← accum<<1
STO rsrc← accum

ZERO accum← 0
LD accum← rsrc

DONE stop execution

• Consider the branching case.

• Sketch enough assembly code to justify your answer.

Complete the following table based on your results.

Architecture Total Cycles for parity pinst width total bits for parity

3 register
2 register
1 register

5. Let’s say you have an old design which is 70% instruction memory, and you’ve picked an
optimized datapath and instruction encoding scheme to reduce the instruction memory
size by 35% while keeping other things the same. Assume, for simplicity, technology is
continuously improving such that you get a reduction in feature size by a factor of 2
every three years. How many months of technology scaling give the same size reduction
as your improved design?

3

ESE680-002 Spring 2007

Simple Branching Processor Datapath

aluop

write

input

output

address_input

program_counter

PC

D
ec

od
e

op

in1 in2

out

writep

dst

ALU

Register
 File

In
st

ru
ct

io
n

 S

to
re

clock

nextPC ifetch idecode rf_read rf_writeeval

Control

branch_addr

op
branch

test

branch branch_addr

BU

reset

dst

src2

src1

dst

src2

src1

The basic processor organization is as shown above. Non-branching instructions are of
the form:

bits 13:10 9 8:6 5:3 2:0
field op w src1 src2 dst

• op – operation to be performed (typically by ALU)
• w – write back ALU output to register file? (1=yes, 0=no)
• src1 – address of first ALU operand in register file
• src2 – address of second ALU operand in register file
• dst – address in register file into which the result should be sotred

For branch operations, the branch addr is the low 6 bits of the instruction; that is, it
is in the same place we would have placed src2 and dst in a normal, ALU operation.

bits 13:10 9 8:6 5:0
field BNZ 0 src1 branch addr

4

ESE680-002 Spring 2007

Generally, on each cycle the processor performs:

op,w,src1,src2,dst = instruction store[pc]
...,branch addr = instruction store[pc]
in1=register file[src1]
in2=register file[src2]
if (w==1)

register file[dst]←(in1 op in2)
if ((op==BNZ) && (in1!=0))

pc←branch addr
else

pc←pc+1

A special “done” operation indicates the computation is done and the program counter
should stop incrementing. A reset signal tells the program counter to set its value to
zero and begin computation.

The following ops are defined:

aluop encoding operation

ADD 0x00 dst← src1+src2
INV 0x01 dst← ∼(src1)
SUB 0x02 dst← src1-src2
XOR 0x03 dst← src1∧src2

OR 0x04 dst← src1|src2
INCR 0x05 dst← src1+1
AND 0x08 dst← src1&src2
BNZ 0x0A if (src1!=0) pc←branch addr
SRA 0x0B dst← src1>>1; dst[31]=src1[31]
SRL 0x0C dst← src1>>1; dst[31]=0
SLA 0x0D dst← src1<<1
SLL 0x0E dst← src1<<1

DONE 0x0F stop execution

5

