
ESE534 Spring 2010

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE534, Spring 2010 Final Exercise April 12, 2010

Complete copy — updated 4/23/10;
two component-olibvious to component-specific corrections 5/10/10

Due: Monday, May 10, 5:00pm

1 Scenario

You are working as a design engineer in the CTO Office for Dcorp. Dcorp produces a 16-
context architecture at various bit widths (Section 5). Currently, they support a bit-level
version, a 4-bit wide version, and a 16-bit wide version.

Looking ahead, CTO Dr. Anne L. Ist is concerned about increasing rates of manufacturing
defects. Anne calls a staff meeting to discuss the implication of rising defect rates and how
the company should respond. In addition to Anne and yourself, the meeting includes the
product manager of each of the three current product lines, Bob Bitwiddler (1-bit wide
product), Nancy Nibble (4-bit wide product), and Wally Wide (16-bit product line), and
Rob Bust, an architect who previously worked on SRAM architectures.

Rob suggests that defects can be easily handled with sparing just like memories. “After all,
most of our area goes into memories,” Rob says.

Wally quips, “well, that’s likely true of the fine-grained product, but our 16-bit product puts
more of its area into compute and interconnect. I doubt that is a complete answer.”

Rob acknowledges that defects will likely be a bigger challenge on the 16-bit architecture,
but also notes that the sparing idea works for logic blocks and interconnect tracks as well.
In fact, he’s recently read a paper on doing fine-grained track sparing in FPGAs [2].

Bob baits Wally with, “I don’t think you should worry Wally. At high defect rates it will
just make more sense to use the bit-level architecture for all designs.”

Wally replies, “...and how many of our customers will we keep when your bit-level components
burn an order of magnitude more energy than my division’s 16-bit architecture!”

Bob replies, “You’ve been listening to your marketing department too much. Nonetheless,
the energy difference will go the other way at high defect rates!”

1

ESE534 Spring 2010

Realizing the Bob–Wally discussion isn’t likely to head in a productive direction, Nancy
changes the subject and notes she recently heard a talk from Gojman and Rubin on component-
specific mapping. She says, “I see how Xcorp,1 could use those techniques to accommodate
defects inexpensively, perhaps giving them an advantage compared to us.” Nancy wonders
if there is a component-specific strategy for Dcorp’s products that might reduce the costs as
the defect rates increase?

Rob complains that the customers would no longer see identical parts with the component-
specific approach.

Anne, preferring to see numbers and calculations to fear and speculation, decides it is time to
wrap up this meeting and start making progress on answering the questions raised. She says,
“Yes, there are many questions for us to sort out here. Rob, can you sketch the sparing-based
approach and provide us with a memo by next week?”

Furthermore, Anne realizes that the product managers each have a vested interest in their
product lines and may not give her an unbiased assessment of the strengths and weaknesses of
their lines. Consequently, she asks you to develop the component-specific solution, compare
it to Rob’s sparing-based design, and assess the impact on Dcorp’s product line, including
the viability of wide-word architectures, as defect rates increase.

1a single-context FPGA vendor who competes with Dcorp for customers

2

ESE534 Spring 2010

2 Problem Specification

1. Develop a component-specific defect-tolerance solution for Dcorp’s architectures (Sec-
tion 5).

(a) Describe your component-specific mapping architecture, parameters, and strategy.

(b) Develop energy and yield models for your component-specific architecture.

2. Develop an energy model for the base Dcorp architecture.

3. Develop energy and yield models for Rob Bust’s proposed sparing-based architecture.

4. Select the energy-minimizing architecture parameters for Rob Bust’s sparing-based ar-
chitecture for defect rates from Pf = 10−19 to Pf = 10−2 with the goal of achieving 90%
component yield of components with 226 bit processing units for the three architecture
cases (w = {1, 4, 16}). For this analysis, wapp = warch.

5. Select the energy-minimizing architecture parameters for your component-specific ar-
chitecture for defect rates from Pf = 10−19 to Pf = 10−2 with the goal of achieving 90%
component yield of components with 226 bit processing units for the three architecture
cases (w = {1, 4, 16}). For this analysis, wapp = warch.

6. Plot energy versus defect rate for both the sparing-based and component-specific mod-
els on a single graph. Also include the energy of the base Dcorp architecture on the
graph for comparison. Provide a separate graph for each width (w = {1, 4, 16}).

7. Develop a model for comparing mismatched application and architecture widths and
analyze whether or not it makes sense to reduce architectural width at high defect
rates (i.e., select warch < wapp).

(a) Develop a model for the energy of running a wider task on a narrower architecture.

(b) Select the 16b-application-energy-minimizing architecture parameters for your
component-specific architecture (including warch and any other granularity pa-
rameters you may have added)2 for defect rates Pf = 0 and from Pf = 10−19 to
Pf = 10−2 with the goal of achieving 90% component yield of components with
226 bit processing units.

(c) Plot energy per 16b operation versus defect rate for your solutions above (7b) and
for the component-specific case where warch = 16 (same as w = 16 graph from 6).

2Please consider all power-of-two warch’s from 1 to 16, not just 1, 4, and 16.

3

ESE534 Spring 2010

3 Report Format

Please provide your solution in the form of a memo to CTO Dr. Ist recommending the
approach for Dcorp.

• Summary [No longer than 4 pages] including:

– One paragraph overall recommendation for company strategy, referring to plots
and tables in this summary section as necessary.

– Three plots (Problem 6 plots) showing energy per operation versus defect rate for
the sparing based and component-specific, matched-width solutions. Each plot
should also include a reference line for the energy of the original Dcorp architecture
at that word width.

– Diagram for component-specific design showing its key parameters.

– Short highlight summary [0.5 page] of how the component-specific architectures
differ from Rob Bust’s sparing-based architecture.

– Plot showing energy on 16b applications versus defect rate for your component-
specific design when you allow warch ≤ wapp along with the curve above where
you demand warch = wapp (Problem 7c plot).

– Table summarizing parameter selection for each of the 4 architecture cases (three
warch = wapp cases and the case where warch ≤ wapp for wapp = 16) for each of the
18 defect rates.

• Consultant log [1 page] summarizing all interactions with other Dcorp employees and
consultants. (Date/time, length of session, participants, topics discussed)
CFO Ty T. Rains will want to know what invoices to expect from consultants and
which employee hours are billable to this project.

• Appendix [as long as necessary] showing the derivation and composition of each model
and selection of parameters.

4

ESE534 Spring 2010

4 Collaboration

Informally: you may discuss strategy and architectural parametrization in groups through
April 26th. All detailed analysis and writeup must be done individually, and no collaboration
is allowed after April 26th.

More precisely:

• Each person must individually prepare his or her own solution memo.

• After April 26th, you should not discuss the project and solutions with anyone. (You
may ask clarifying question of the instructor after April 26th — nonetheless, the in-
structor will be more generous with answers and discussion before April 26th than
after.)

• Before April 26th, you may discuss:

– provided designs

– parameters and mapping strategy for the component-specific designs

– general analysis approach

– diagrams and equations on a white-board, napkin, and/or pencil and paper

– component-specific mapping in general with Dcorp consultants Rafi Rubin and/or
Benjamin Gojman

• Your writeup must document your discussion groups and sessions.

• You may not:

– develop final analysis equations with others

– share analysis code

– share final diagrams

– have a joint coding or drawing session for analysis and diagrams

– show others your computer-drawn diagrams or computer-rendered analysis

5

ESE534 Spring 2010

5 Dcorp Architecture Before Adding Defect Tolerance

64 total wires

6
4
 to

ta
l w

ire
s

Select 16 (groups of w)
Cluster Xbar

3−LUT

C
o

n
n

e
c

t to
 o

n
e

 w
−

w
id

e
 b

u
s

• Parametrized compute datapath width (Warch)
• 3-LUT computing elements controlled in groups of Warch

• Compute blocks composed of 16 physical 3-LUTs
• Crossbar interconnect within clusters (operating on Warch-wide busses)
• 16-inputs and 16-outputs from cluster to network (selected as and grouped into Warch-

wide busses); treat as fully populated. Input selection can be N -choose-M .
• Mesh interconnect between clusters, channel width Wmesh = 64 (segment length 2)

– Interconnect routes busses of Warch wires
– subset (diamond) linear switchbox population topology
– bidrectional wires

• c = 16 context architecture
• Local data memories:

– d = 16 data memory depth
– Three Warch-wide memory banks per Warch-wide operator that can read and write

one word each cycle
– Each of the 3×16

Warch
memory banks is independently addressable (has own read and

write address and own decoder).
– Total memory 3× 16× 16 = 768 bits in all cases

• One decoder to select the instruction word for entire tile

6

ESE534 Spring 2010

For the Warch = 16 case:

• Cluster reduces to a single 16b-wide SIMD datapath.

• Cluster crossbar reduces to a 16b-wide, 2-input mux for each of the 3 16b-wide memory
banks (one input comes from the channel inputs, the other is the output of the cluster
from the previous cycle).

• The 64 wire wide channel is 4 16b busses.

• The input select becomes a 16b-wide, 4-input mux.

• The switchbox and corner turns have the same number of drivers/multiplexers as the
other Warch cases, but fewer control bits since groups of 16 switchpoints are controlled
together.

For the Warch = 4 case:

• Cluster is 4 4b-wide SIMD datapaths.

• Cluster crossbar takes in 4b input busses (4 from input selection, 4 from outputs of
the cluster) and supplies the 12 4b-wide memory bank inputs.

• The 64 wire wide channel is 16 4b busses.

• The input select is a 16-choose-4 selection unit operating on 4b-wide busses.

• Each datapath output bus can be driven to one of the 16 4b busses in the channel.

• The switchbox and corner turns have the same number of drivers/multiplexers as the
other Warch cases, but fewer control bits since groups of 4 switchpoints are controlled
together.

7

ESE534 Spring 2010

6 Technology Model

LUT: Model the 3-LUT as an 8:1 mux.

Switchbox selection: Model each switchbox output as a 4:1 mux. These are really 3:1
muxes with the ability to drive or not drive the output (Day 20, slide 61; Figure 4a in [1]).
The fourth configuration is for the non-drive case. Since we are modeling a bidirectional
drive case, segments can be driven from either end, bidirectional corner-turn switch, or
cluster output switch.

enable?

control

out

Crossbar/Mux: We will model Crossbars and muxes equivalently based on their inputs,
outputs. That is, an N -input, M -output crossbar is M N :1 muxes.

• Each of the dlog2(N)e control inputs to the mux fails with probability Pf .

• Each of the N data inputs to the mux fails with probability
Pf

10
. If you are looking for

a perfect mux, then the mux fails with probability
(
dlog2(N)e+ N

10

)
× Pf ; we provide

this additional detail in case your component-specific modeling can exploit a partially
defective mux. You may assume a failed mux input does not short the input wire
connected to it.
• The capacitive load on each data input is 10−16F.
• The capacitive load on the output of the mux is 2× 10−16F.
• The capacitive load on each control input is N × 10−16F.
• The capacitive load switched internal to the mux is 10−15F.

Bidirectional Switch: Model a bidirectional switch as two back-to-back directional switches.
A corner-turn is a bidirectional switch. For the component-specific case, it may be useful to
reason about the independent failure of the two directional switches.

Directional Switch

Directional Switch

enable
left−right

enable
right−left

8

ESE534 Spring 2010

Directional Switch: An output to channel connection is a directional switch.

2x

1x

10x

5x
5x

In Out

Enable

• Fails with probability Pf . Failure of a directional switch causes the driven wire (out
side) to fail.
• The capacitive load on the data input is 10−16F.
• The capacitive load on the output is 2× 10−16F.
• The capacitive load on the control input is 2× 10−16F. (Single bit control input)
• The capitive load switched internal to the switch is 10−15F.

Memory: Since we are building small (nominally 16-deep) memories, the memory model is
specialized around this size. We turn the log(d) term we’ve been using during the semester
into a constant. We also size the the buffers differently.

• Each nominal 16-deep memory is addressed with 4b. There may be component-specific
cases where you use a slightly larger memory that may need 5b of address.
• We will model spare and non-spare rows with the same defect rates and the same

capacitive loads.
• Each memory bit fails with probability Pf . A failed memory bit does not short either

its row-line or bit-line.
• The decoder for a row fails with probability Pf . A failed decoder makes the row

unusable, but does not interfere with addressing of other rows.
• The each output driver from the memory fails with probability Pf .
• Capacitance switched on a data memory operation is:

(2dw + 4d + 4w)× 10−16F. (1)

d will be 16+rspare.
• Capacitance switched on an instruction memory operation is:

(dw + 2d + 2w)× 10−16F. (2)

d will be 16+rspare. Instruction memories only perform reads, while data memories
perform both a read and a write on every cycle.

Wire: Failure and capacitance for wires are lumped into the mux or switch output(s) driving
the wire. Wires do not need to be modeled separately. We can do this because we’re working
with a fixed segment length and channel width, so do not need to account for the effects of
wires of significantly different lengths.

9

ESE534 Spring 2010

The following are assumed not to fail:

• Clock and clock network
• Program Counter
• Distribution of program counter to the Instruction Memory decoders
• Path to load instruction memories (not shown)

We assume these are built out of larger feature size technology. We further assume their
energy is second order to the energy for compute, interconnect, and memories.

10

ESE534 Spring 2010

7 “Rob Bust” Bit-level, Component-Oblivious Archi-

tecture for Dcorp

To: CTO Anne L. Ist and staff, Bob Bitwiddler, Nancy Nibble, and Wally Wide
From: Rob Bust, Reliability Architecture
Subject: Sparing-based defect tolerance for Dcorp architectures
Date: April 19, 2010

The goal of this defect-tolerance scheme is to provide a repaired component that is completely
compatible with Dcorp’s baseline, defect-free design.

The strategy is to use a separate set of configuration controls—perhaps these will be fuses,
or perhaps they are also SRAM configuration bits—to replace broken functions and provide
a design-independent component.3 That is, once these configuration controls are applied,
the resulting component will support any design that would have worked on the baseline
Dcorp architecture of the associated bit width.

Basic components of the solution include:

• Segregate instruction decoder within tile (how much segregation is a tuning parameter)—
each decoder drives at most idecode memory bits.
• Spare rows in instruction memory (rispare)
• Spare rows in data memory (rdspare)
• Spare 3-LUT datapaths in cluster (cspare)
• Spare channels in mesh and spare inputs to cluster (tspare) using track shifting archi-

tecture around s× s regions

We tune the parameter set (idecode, rispare, rdspare, cspare, tspare, s) to best accommodate a target
defect rate.

3To avoid further complexity, we will assume the area for these configuration controls is small compared
to the resources they control. Consequently, you will not need to count these in your models.

11

ESE534 Spring 2010

Memory Sparing: Since much of the design is memory, we start by using row sparing to
repair the memories, providing extra rows in both the data memories and the instruction
memories. In the baseline architecture, we treat the instruction memory as a single, tile-
wide instruction word. This means we only have to pay for the decoder overhead once for
the entire tile. However, this also means that any bit error in the wide instruction memory
word renders that word imperfect. Since the instruction memory word is over a hundred
bits wide in some architectures, this could make it hard to yield a complete instruction word
row for the higher defect rates. Consequently, as the defect rate increases, we may want
to decompose the instruction word into multiple, independent memory banks, each with its
own decoders, within the tile. [In the memory energy model, the 2d term is for the decoder.
For example, breaking a wi-bit memory bank into two wi/2-bit memory banks goes from
Cimem = (dwi + 2d + 2wi) × 10−16F to Cimem = 2 × (dwi/2 + 2d + 2wi/2) × 10−16F =
(dwi + 4d+ 2wi)× 10−16F. While we’ve kept the number of memory bits the same, the need
for a second decoder has doubled the energy spent on decode.] As already noted in the base
architecture, each of the 3 w-bit wide data memories for each w-bit wide datapath already
has its own decoder, so data memories do not have the same difficulty; consequently, we do
not consider decomposing the decoders for data memories.

The two figures below illustrate this decoder sharing/decomposition idea. The first case
shows a shared decoder across, at least, 4 compute blocks (and their associated data memories
and cluster interconnect) within a cluster, while the second shows the decoder shared across
only 2 compute blocks.

3−LUT 3−LUT 3−LUT 3−LUT

Cluster
Crossbar
Inputs

4b−context
 select

16+spare
 rows

Cluster
Crossbar
Inputs

3−LUT 3−LUT

16+spare
 rows

3−LUT 3−LUT

16+spare
 rows

4b−context
 select

4b−context
 select

The complete cluster memory also controls the interconnect in the tile. You do not need to
decompose the instruction memory at functional unit boundaries.

12

ESE534 Spring 2010

Logic Sparing: Even with perfect memory, we could have defects that damage the compute
units in the cluster or the cluster interconnect. We will consider the cluster crossbar and
the LUTs together. The unit of sparing is a w-bit wide LUT datapath including its output
selection from the cluster crossbar. We provide spare w-bit wide LUT datapaths including
input selection in the cluster. Since spares come in w-bit wide datapaths, the smallest
number of spare LUTs is 1 for the 1-bit case, 4 for the 4-bit case, and 16 for the 16-bit case.
This means the 16-bit case demands a duplicate datapath once it needs a spare.

The figure below illustrates sparing. Concretely, you can think of this as the 4 4-bit wide
datpaths for the 4b architecture where we’ve added a 5th datapath as a spare.

3−LUT 3−LUT 3−LUT 3−LUT 3−LUT

Baseline compute blocks Spare compute

Cluster Crossbar
Input set includes
 spare compute
 block outputs
 and track spares

Note that the outputs of all of the datapaths (originals and spares) become inputs to the
cluster crossbar. The cluster crossbar will also have additional inputs for segment spares as
described below.

13

ESE534 Spring 2010

Track Sparing by Shifting: To tolerate switch and wire defects in the interconnect, we
widen the channel by a number of spare busses and add the ability to shift over by a number
of busses. To keep this simple, we use a slightly different scheme than [2]. We leave the
normal switchboxes alone. However, we divide the array into s × s regions with track shift
blocks. We parametrize both the number of spare tracks and the size of the region.

If we had a small chip, we could just add one or more spare tracks per segment offset.4 Since
we are using a diamond (subset) switch, the tracks are organized into domains. Since we want
the component to look like a perfect, defect-free component, any defect in a domain makes
the domain imperfect. Consequently, we substitute out defective domains for defect-free
domains. However, since we have a large chip, the probability that a domain is defect-free
becomes negligibly small. So, instead, we break the chip up into these s× s regions so that
there is a good chance that the domain—in fact, almost all the domains—in the s× s region
are defect-free. We provide spare domains to substitute for defective domains within the
region.

Two adjacent regions may not have the same defective domain. So, at the boundary of the
domain, we need to match the good domains in the adjacent regions. To do that we use the
track shift units. The track shift units allow us to link together domains.

Shown below is a track shift unit in the case where there are 3 base tracks and one spare
track. The shifter allows signals to shift one track up or down. The “shift” is actually a
rotation so the track that shifts off the top end ends up shifting into the bottom end. In
the general case, a region with tspare spare tracks will need 2tspare + 1 inputs to each mux to
shift tspare tracks in each direction.

Note that shifters can also be defective. A defective shifter mux renders the domain it drives
unusable.

4Due to our goal of identical appearance, a spare track can only substitute for a track at the same segment
offset.

14

ESE534 Spring 2010

Shown below is a set of track shifters placed around 2× 2 tile regions. Note that there are
two separate shifters per channel—one for each of the segment offsets.

track

shift

units

The example below shows how the shifter functions to connect up domains between regions.

15

ESE534 Spring 2010

Input Connection-Box Bus Selection: We also bring in tspare tracks into the cluster
crossbar and use a pair of track shifter between the channel and the cluster. The pair of
track shifters provide one for each segment offset to match the way the wires are shifted and
repaired at region boundaries.

track
shifter input

selector

(16/w)+tspare
input busses

to cluster crossbar

2*[(64/2w)+tspare]
 busses

16

ESE534 Spring 2010

References

[1] Guy Lemieux, Edmund Lee, Marvin Tom, and Anthony Yu. Directional and single-
driver wires in fpga interconnect. In Proceedings of the International Conference on
Field-Programmable Technology, pages 41–48, December 2004.

[2] Anthony J. Yu and Guy G. Lemieux. Defect-tolerant FPGA switch block and connection
block with fine-grain redundancy for yield enhancement. In Proceedings of the Interna-
tional Conference on Field-Programmable Logic and Applications, pages 255–262, 2005.

17

