# University of Pennsylvania <br> Department of Electrical and System Engineering Computer Organization 

Due: Monday, January 25, 12:00Pm (except A.3, C. 2 as noted)
For all assignments in this class: Writeups must be done in electronic form and submitted through blackboard. Use CAD or drawing tools where appropriate. Handwritten assignments and hand-drawn figures are not acceptable.

You may do sections (A and B ) or ( B and C ). C is primarily intended as a more challenging (interesting) alternative for students who have already had considerable experience with digital logic.

You may use hierarchial schematics. Use of a schematic drawing program for circuits is encouraged.

## A: Basic Logic

1. Implement $A>B$ out of 2-input NAND gates; assume $A$ and $B$ are 4b unsigned numbers. (Hint: design the bit slice and show how the bit slices compose for 4 b numbers.)
2. Using your comparison function from A.1, show logic for a spatial sorting function to sort $4,4 \mathrm{~b}$ inputs into ascending order.
3. Show the logic (RTL logic - i.e. logic equations and registers) for a simple vending machine. [Defer this to Monday, February 1 - return with HW2.]

Inputs: $\mathrm{n}, \mathrm{d}$, and q , (nickle, dime, quarter)
Output: v (vend), nc (nickle change)
Function: Collect $\geq 30$ cents, then vend and give change in nickles.

- Don't worry about running out of nickles to provide as change.
- Include a diagram of your state-transition graph in your writeup.
- Hint: It is probably easier not to use adders and datapath logic for this problem.

Course Web Page: [http://www.seas.upenn.edu/~ese534/](http://www.seas.upenn.edu/~ese534/)

## B: Properities of Boolean Functions

1. Consider all two-input functions. (How many functions are there?)

For each function, identify if the function is universal; you may tie the inputs of a function to a constant 0 or 1 . Your writeup should be a table, with the following entries for each two-input function:

- list on-set minterms (i.e. the truth table)
- logic expression for function
- universal?
- explanation of why or why not

2. Counting each gate as unit size, give a bound on the size ratio between an optimal implementation of an arbitrary $n$-input function when the implementation may use an optimal mixture of the full set of 2-input functions from B. 2 as gates compared to an implementation which uses only 2 -input NOR gates.

## C: Advanced Logic Problems

1. Using only two-input NOR gates, give a bound on the number of different functions that can be implemented with depth $l$. (Your bound should be non-trivial, but does not need to be tight.)
2. Firing Squad - Design the logic for an FSmodule. [Defer this to Monday, February 1 - return with HW2.]

- FSmodules can be assembled into a 1d array of arbitrary length.
- Each FSmodule is connected exclusively to his left and right neighbors.
- The leftmost FSmodule will get a start input.
- FSmodules may have configuration input bits which distinguish the leftmost and rightmost modules from the rest (i.e. a module will be leftmost, rightmost, or a chained element).
- All FSmodules are clocked together.
- Data can travel from one FSmodule to his adjacent neighbor in one cycle.
- You can have a constant number of wires between adjacent FSmodules (independent of the length of the 1d array).
- The state in an FSmodule is finite and independent of the length of the 1d array.
- In response to an input pulse on the leftmost module, the array of FSmodules should all, simultaneously flash an output light.
- The number of cycles between the input pulse and the synchronized firing of the FSmodules' lights is not restricted.

Show your state-transition graph and gate logic (you may write equations for the logic as long as the equations identify the primitive gates). Describe the operation of your solution.

