University of Pennsylvania Department of Electrical and System Engineering Computer Organization

ESE534, Spring 2010 Assignment 3: Microcode Processor Monday, Feb. 1

Due: Monday, February 9, 12:00PM

We will build up an area model for a microcoded processor, write two simple programs, and estimate areas.

- Area(register) = 4
- Area(2-input gate) = 2
- Area of a *d*-entry, *w*-bit wide memory $= d(2\log_2(d) + w) + 10w$

This corrected 2/7 – original shown at end.

- 1. Determine the area of the ALU as a function of width, w.
 - (a) Select the encodings for ALU operations in Table 1 (you will want to try to select them to simplify the bitslice and non-bitslice logic).
 - (b) Write equations for the ALU bitslice to support the operations indicated in Table 1.
 - (c) Add parentheses to the ALU bitslice equations so it is easy to count the number of 2-input gates required.
 - (d) How many 2-input gates doe the bitslice require?

- (e) Identify any non-bitslice logic you may need, write equations, and report the gate count for this logic.
- (f) Write the equation for the area of a w-bit ALU.
- 2. Determine the area of the register file memory as a function of datapath width w and number of data items r. Assume the two-bank register file model shown above and in class.
 - (a) Write the equation for the area of the w-wide, r-deep register file.
- 3. Determine the area of the instruction memory as a function of r and the number of instructions stored, i.
 - (a) How many bits does the instruction memory need to supply?
 - (b) Write the equation for the area of the instruction memory as a function of r and i.
- 4. Determine the area of the program counter as a function of the number of instructions in the instruction memory, *i*. Assume the program counter block includes the mux shown (also defined by Table 2). You don't have to worry about the Stop case; we'll assume other logic takes care of that.
 - (a) How many bits does the program counter need to store?
 - (b) Write equations for the bitslice of the program counter (including both the mux selection and addition). [original erroneously said "register file" instead of "program counter"]
 - (c) How many 2-input gates are required for each program counter bitslice?
 - (d) Write the equation for the area of the program counter supporting an instruction memory with i instructions.
- 5. Determine the area of the processor as a function of (i, r, w).
 - (a) Composing your results above, write the equation for a processor with the parameters (i, r, w).
 - (b) For the case where (i = 16, r = 8, w = 16), make a table to show the area breakdown by functional units (ALU, register file, instruction memory, program counter). Show both the absolute area and percentage of total in the table.
 - (c) Show a similar breakdown for the case (i = 256, r = 32, w = 16).
- 6. Write microcode instructions for an $8b \times 8b$ multiply on a w = 16 processor without branching (PC-Mode=Increment) and estimate the area of the minimum processor to support.
 - (a) Write the set of instructions required. Try to minimize the number of instructions and registers needed.

aluop	operation
ADD	$out \leftarrow input1 + input2$
INV	$out \leftarrow \sim (input1)$
SUB	$out \leftarrow input 1-input 2$
XOR	$out \leftarrow input1 \land input2$
OR	$out \leftarrow input1 input2$
INCR	$out \leftarrow input1+1$
AND	$out \leftarrow input1\&input2$
SRA	out \leftarrow input1>>1; out $[w-1]$ =input1 $[w-1]$
SRL	out \leftarrow input $1 >> 1$; out $[w - 1] = 0$
SLA	$out \leftarrow input 1 << 1$
SLL	$out \leftarrow input 1 << 1$

Table 1: Operations supported by the ALU

PC-Mode	encode	PC Behavior	
Increment	00	PC←PC+1	
Add Instr	01	$PC \leftarrow PC + (SRC1 \text{ concat } SRC2)$	
		treat as signed number	
		so can be negative.	
Add Reg	10	$PC \leftarrow PC + register_file[SRC1]$	
Stop	11	PC←0	
		and stop executing	

Table 2: Program Counter Modes (PC-Mode)

- (b) How many cycles does this require to execute?
- (c) How many registers do you need to use?
- (d) Use your area model to estimate the area of the minimum processor that will support your code.
- 7. Write microcode instructions for an $8b \times 8b$ multiply on a w = 16 processor with branching (you may use all 3 PC-Modes) and estimate the area of the minimum ALU to support.
 - (a) Write the set of instructions required. Try to minimize the number of instructions and registers needed.
 - (b) How many cycles does this require to execute?
 - (c) How many registers do you need to use?
 - (d) Use your area model to estimate the area of the minimum processor that will support your code.

This doesn't show a separate destination address for the result of the operation. It also shows the concatenation of SRC1-address with SRC1-write to form the Add Instr offset rather than SRC1-address being concatenated with SRC2-address as intended and captured in Table 2 above.

Figure 1: Original (erroneous) datapath