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1. We are trying to build a large memory out of a collection of memory banks. To focus
the problem on the key effects, we will take w and d as fixed and explore row sparing
(rspare). Our goal for this problem is to select rspare to maximize the expected number
of yielded memory banks on a die of fixed size. All banks must provide d words of
data, so a bank that does not have sufficient spares to replace its failed rows will be
considered unusable. Set d = 210, w = 210, and Achip = 228.

We use the same basic area model as before, but expand it to include rspare spare rows.
We assume spare rows are more expensive than normal rows since they must have a
programmable address to replace the normal rows.

Abank = (d + 2× rspare)(2 log2(d) + w) + 10w (1)

We build an entire chip by composing banks.

Achip = Nbanks × Abank (2)

Here we assume the area for interconnect to address the banks is captured in the bank
area.

Since we are focusing on row sparing, we will simply specify the probability of yielding
a row, Prow. Assume both normal and spare rows yield with probability Prow. In
practice, we might compute Prow based on the probability of yielding each memory bit
in the row and the probability of yielding the row decoder.

As one simplification for this problem, we are assuming no failure takes out an entire
column.
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(a) What is the probability of yielding a bank (Pbank) as a function of rspare? [an
equation]

(b) How many banks can you put on a chip as a function of rspare? You cannot use
fractional banks, so this should be an integer. [an equation]

(c) What is the expected number of repairable blocks on the chip as a function of
Pbank? [an equation]

(d) For each of the following row yield rates, Prow, identify the optimal number of
spares and the resulting expected number of repairable memory banks on a chip.
[Describe how you arrive at your answer, include supporting data, and provide a
completed table.]

Prow rspare E(repairable banks/chip)

1.00
0.9999
0.999
0.99
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2. For this problem, we will compare the energy of three Finite-Impulse Response (FIR)
implementations with different levels of programmability.

Component Energy

ALU 8w
Adder 4w

Equal-zero 2w
Multiply 4w2

Memory Bank d(log2(d) + w) + 10w
Single-Output Mux Nin + log2(Nin)

We assume program counter energy is negligible and omit it for this model.

An FIR operation is computed on a stream of input samples, xi, to produce a stream
of outputs, yi, as follows:

yi =
j=(n−1)∑

j=0

(xi−j × cj) (3)

cj’s are constants that determine the particular FIR computed. That is, we perform n
multiplications and n− 1 additions to compute each output result yi.

The datapath includes an input path where the sample value (xi) can be loaded and an
output into which to load the resulting yi. The instruction should include an output-
write bit to signify when yi should be loaded, and one multiplexer selecting sources
into the data memory should support the xi input.

The multiplication on two w-bit values produces a 2w-bit result. The sum of n w-bit
values may require w+log2(n) bits to represent. As a result, we might want multiple bit
widths in our datapath and memories. For simplicity in this problem, we will assume
we select a single, uniform w for the multiplier, data memory, and ALU widths. This
may mean that we store some values (cj’s and xi’s) that are smaller than w to avoid
overflowing the result of the multiplication and summation.
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For this problem, we consider three cases:

(1) Hardwired FIR – only the coefficients are programmable. As shown, coefficients
can be loaded using the same shift path for xi inputs. For modeling, assume all registers
and adders are w-bits wide and the multiplier is a w × w multiply. Figure shows an
n = 4 hardwired FIR.

X X X X

+ +

+

xi

i−4y

load coefficients

w
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(2) ALU-based programmable datapath – single ALU datapath similar to pre-
vious assignments. We add a branch-zero instruction bit that allows the PC to be
conditionally loaded from the instruction memory based on a value read from the data
memory.
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Here is the code snippet for performing a single multiplication:

init-constants: L4,R1←R1-R1 // R1=0, L4=0
R1←L4+1 // R1=1

// Assume operands in L1, L2
L3←L3-L3 // L3=0, clear sum

mpy-top: if (L2==0) PC=mpy-complete // exit if done
else PC=PC+1

R2←L2 AND R1 // extract L2[0]
R2←L4-R2 // if (L2[0]==0) R2=0 else R2=-1=0xffffffff
R2←L1 AND R2 // if (L2[0]==0) R2=0 else R2=L1
L3←L3+R2 // conditionally add shifted operation into sum
L1←L1<<1 // shift L1 up for significance of next L2 bit
L2←L2>>1 // shift L2 down so next bit is in zero position
if (L4==0) PC=mpy-top // unconditional branch to continue mpy

else PC=PC+1
mpy-complete: // result in L3; continue with next operation

You do not have to use this multiply routine. Nonetheless, this does suggest a sample
format for expressing your instructions. Li refers to a data in the left (L) memory
bank, and Ri refers to one in the right (R) memory bank. Note that the datapath
allows you to write values to either or both banks, hence the first instruction above
exploits that to write a 0 into different slots in each of the banks at once. Assume you
can write to a non-existent bank address when you do not want to write the value to
any slot in the bank.
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(3) Programmable datapath with a single, hardwired multiplier – add a hard-
wired w×w multiplier to the datapath (in parallel with the ALU) with additional data
routing to select the output of the multiplier.
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(a) Write the code to perform the FIR operation on the multiplier-less programmable
datapath (2). Try to minimize the energy for this computation. As you will cal-
culate, energy depends on the number of instructions in the instruction memory,
the number of data items stored in the data memory, and the number of cycles
required to perform the task.

(b) Write the code to perform the FIR operation on the programmable datapath with
the multiplier (3). Try to minimize energy for this computation.

(c) Identify the minimum (i) size of the instruction and (ii) data memories necessary
to support the code written above and (iii) the number of cycles required to
compute the n-point FIR on a w-bit datapath (you may assume the datapath
width and task width are matched). [an equation with w and n as parameters].

(d) Give equations for the total energy to perform an n-point FIR on w-bit samples
(xi) with w-bit coefficients (cj) for each of the three cases identified above. [an
equation with w and n as parameters].

(e) For w = 16, n = 8, calculate and report the energy for each of the three cases
identified above.
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