
ESE534 Spring 2010

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE534, Spring 2010 Assignment 7: Compute March 22

Due: Monday, March 29, 12:00pm

For this assignment, you will implement one simple logic function on computing arrays with
three different compute blocks. The goal of this assignment is to give you a feel for the
strengths and weaknesses of these different forms of programmable compute blocks.

Problem: Perform a saturated addition on a pair of 5b-signed (two’s complement – value
range is [15:-16]) integers producing a 5b-signed result. Take the saturation bounds (maxval,
minval) as inputs.

SATADD(A,B,maxval,minval)
tmp=A+B // tmp will be a 6b-signed integer
if ((A+B)>maxval)

sum=maxval
else if ((A+B)<minval)

sum=minval
else

sum=A+B

One reason to use saturated arithmetic is to avoid the aliasing that occurs when the result
is outside of the range supported by a limited datapath width. For example, if this were
simply a 5b-ALU datapath and you added 10 to 10 (each encoded as 01010), the sum would
be 10100, or -12. If, instead, we took maxval=15 and performed saturated addition, then
SATADD(10,10,15,-16)=15. In some applications (particularly DSP applications), it is more
useful to simply saturate the sum to a chosen maximum value like this than for the result
to wrap around to a negative number.

• A different style of solution may match different compute structures.

• Try to minimize compute block count and evaluation latency in your implementations.

1

ESE534 Spring 2010

For all of the designs, the compute blocks live in an n×m array as shown:

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Compute
 Block

Please measure all interconnect distances as the Manhattan distance between the source and
the sink. That is:

distance = |Xsrc −Xsink|+ |Ysrc − Ysink| (1)

For each design, please detail the configuration of each cell used and provide a layout diagram.
For each LUT, you may give the logic equation it implements. Similarly, for a PLA, you
may give the equations implemented by each product term and sum term.

Assume the input comes from one side (you choose where) and the output exits the opposite
side.

2

ESE534 Spring 2010

Compute Block Cases:

1. 8b ALU: The compute block is an 8b ALU (with opcode functionality as on HW3).
We add comparison to zero that produces a single bit of output that indicates whether
the output of the ALU is a zero. The ALU output and zero-comparison output can be
optionally registered. The network is a bit-level network and can route all 9 outputs
and 16 inputs independently. For example, this allows you to route bit 5 from your
inputs to bits 5, 6, 7, and 8 of the ALU to perform sign extension. The ALU is statically
configured to perform a single operation.

Delay model:
ALU evaluation (including zero compare) 0.5

Final (flip-flop) mux 0.1
Interconnect 0.2 × Manhattan distance

ALU

=0?

8b 8b

8b

1b

3

ESE534 Spring 2010

2. Cascaded 4-LUT: The compute block is a 4-LUT with a cascaded fifth input. The
output may be a registered or unregistered version of the output of the cascade mux.
The cascade travels along the X direction, such that the input comes from the left
(X-1) and the output goes to the right (X+1).

Delay model:

4-LUT prior to 2-input cascade mux 0.2
2-input mux delay from cascade input 0.1

Final (flip-flop) mux 0.1
Interconnect 0.1 × Manhattan distance

4LUT 4LUT

Casade
 Input

Cascade
 Output

The cascade input is hardwired so that it is generated only by the 4-LUT on the left:

4LUT 4LUT

Cascade
 Output

Casade
 Input

4LUT 4LUT

Cascade
 Output

Casade
 Input

4LUT 4LUT

Cascade
 Output

Casade
 Input

4LUT 4LUT

Cascade
 Output

Casade
 Input

Since the cascade is hardwired, the only way to use the cascade input is as the output
of the previous block—so if you just want to use the cascade to implement a 5-LUT,
you will need to use two compute blocks.

4

ESE534 Spring 2010

3. PLA 16×10×4: The compute block is a 16-input, 10-product term, 4-output AND-
OR PLA. Each of the inputs may be optionally inverted. Each of the outputs may be
optionally registered.

Delay model:
PLA Evaluation (both planes) 0.6

Final (flip-flop) mux 0.1
Interconnect 0.2 × Manhattan distance

N.B. I think of the 8b ALU logic block and PLA as being roughly the same size. The 4-LUT
cascade logic block is about one-fourth the size of the PLA or 8b ALU. This is the reason
for the different distance metrics.

Summarize Results: Please fill in a table like the following to summarize your results.

Compute Block Latency Blocks Used Minimum Rectangle Enclosing Design

8b ALU
4-LUT Cascade
PLA 16×10×4

e.g.

Compute Block Latency Blocks Used Minimum Rectangle Enclosing Design

4-LUT Cascade 10 33 6×6

5

