ESE534:
Computer Organization
Day 17: March 29, 2010
Interconnect 2: Wiring
Requirements and Implications
Penn

Today

- Wiring Requirements
- Rent's Rule
- A model of structure
- Implications

Previously

- Identified need for Interconnect
- Seen that interconnect can be expensive
- Identified need to understand/exploit structure in our interconnect design

Wires and VLSI

- Simple VLSI model
- Gates have fixed size ($\mathrm{A}_{\text {gate }}$)
- Wires have finite spacing $\left(\mathrm{W}_{\text {wire }}\right)$
- Have a small, finite number of wiring layers
- E.g.
-one for horizontal wiring
-one for vertical wiring
- Assume wires can run over gates

Preclass 1

- How many 40F×40F gates in $25,000 \mathrm{~F} \times 25,000 \mathrm{~F}$ region?
- How many wires can go in and out?
- Ratio?

Important Consequence

- A set of wires
- crossing a line
- take up space:

$$
W=\left(N \times W_{\text {wire }}\right) / N_{\text {layers }}
$$

How many wires?

- We can get a lower bound on the total number of horizontal (vertical) wires by considering the bisection of the computational graph:
- Cut the graph of gates in half
- Minimize connections between halves
- Count number of connections in cut
- Gives a lower bound on number of wires

Penn ESE534 Spring2010 - DeHon

Next Question

- In general, if we:
- Cut design in half
- Minimizing cut wires
- How many wires will be in the bisection?

Thompson's Argument

- The minimum area of a VLSI component is bounded by the larger of:
- The area to hold all the gates
- $A_{\text {chip }} \geq N \times A_{\text {gate }}$
- The area required by the wiring
- $A_{\text {chip }} \geq N_{\text {horizontal }} W_{\text {wire }} \times N_{\text {vertical }} W_{\text {wire }}$

Arbitrary Graph

- Graph with N nodes
- Cut in half
- N/2 gates on each side
- Worst-case?
- Every gate output on each side
- Is used somewhere on other side
- Cut contains N wires

Arbitrary Graph

- For a random graph
- Something proportional to this is likely
- That is:
- Given a random graph with N nodes
- The number of wires in the bisection is likely to be: $\mathrm{c} \times \mathrm{N}$

Particular Computational Graphs

- Some important computations have exactly this property
- FFT (Fast Fourier Transform)
- Sorting

FFT

- Can implement with N/2 nodes
- Group row together
- Any bisection will cut N/2 wire bundles
- True for any reordering

Assembling ...

- $A_{\text {chip }} \geq N \times A_{\text {gate }}$
- $A_{\text {chip }} \geq C N W_{\text {wire }} \times c N W_{\text {wire }}$
- $\mathrm{A}_{\text {chip }} \geq(\mathrm{cN} \mathrm{W} \text { wire })^{2}$
- $\mathrm{A}_{\text {chip }} \geq \mathrm{N}^{2} \times \mathrm{C}^{\prime}$

Intuitive Version

- Consider a region of a chip
- Gate capacity in the region goes as area (s^{2})
- Wiring capacity into region goes as perimeter (4s)
- Perimeter grows more slowly than area

Preclass 2

- How does ratio change for $100,000 \mathrm{~F} \times 100,000 \mathrm{~F}$ region?

Result

- $A_{\text {chip }} \geq \mathrm{N}^{2} \times \mathrm{C}^{\prime}$
- Wire area grows with the square of gate area
- Troubling:
-To double the size of our computation
-Must quadruple the size of our chip!
\qquad

First Observation

- Not all designs have this large of a bisection
- What is typical?

Architecture \Leftrightarrow Structure

- Typical architecture trick:
- exploit expected problem structure
- What structure do we have?
- Impact on resources required?

Bisection Bandwidth

- Bisection bandwidth of design
\rightarrow lower bound on wire crossings
- important, first order property of a design.
- Measure to characterize
- Rather than assume worst case
- Design with more locality \rightarrow lower bisection bandwidth
- Enough?

Penn ESE534 Spring2010 -- DeHon

Regularizing Growth

- How do bisection bandwidths shrink (grow) at different levels of bisection hierarchy?
- Basic assumption: Geometric
- 1
$-1 / \alpha$
$-1 / \alpha^{2}$

Geometric Growth

- (F, α)-bifurcator
- F bandwidth at root
- geometric regression α at each level

Rent's Rule

- In the world of circuit design, an empirical relationship to capture:

$$
\mathrm{IO}=\mathrm{c} \mathrm{~N}^{\mathrm{p}}
$$

- $0 \leq p \leq 1$
- p - characterizes interconnect richness
- Typical: $0.5 \leq p \leq 0.7$
- "High-Speed" Logic $p=0.67$

Rent and Locality

- Rent and IO quantifying locality
- local consumption
- local fanout

35

What tell us about design?

- Recursive bandwidth requirements in network

As a function of Bisection

- $A_{\text {chip }} \geq N \times A_{\text {gate }}$
- $A_{\text {chip }} \geq N_{\text {horizontal }} W_{\text {wire }} \times N_{\text {vertical }} W_{\text {wire }}$
- $\mathrm{N}_{\text {horizontal }}=\mathrm{N}_{\text {vertical }}=\mathrm{IO}=\mathrm{cN}^{p}$
- $\mathrm{A}_{\text {chip }} \geq(\mathrm{cN})^{2 p}$
- If $p<0.5$

$$
\mathrm{A}_{\text {chip }} \propto \mathrm{N}
$$

- If $p>0.5$

$$
\mathrm{A}_{\text {chip }} \propto \mathrm{N}^{2 p}
$$

In terms of Rent's Rule

- If $p<0.5, \quad A_{\text {chip }} \propto N$
- If $p>0.5, \quad A_{\text {chip }} \propto N^{2 p}$
- Typical designs have $\mathrm{p}>0.5$
\rightarrow interconnect dominates

Penn ESE534 Spring2010 -- DeHon

What tell us about design?

- Interconnect lengths
- Intuition
- if $p>0.5$, everything cannot be nearest neighbor
- as p grows, so wire distances

Preclass 3

- What's minimum length for longest wires?

Penn ESE534 Spring2010 - DeHon
42
N.B. necessary but not sufficient condition on network design

- l.e. design must also be able to use the wires

Capacity

- Rent: $10=C^{*} N^{p}$
- $p>0.5$
- $A=C^{*} N^{2 p}$
- Sanity Check
$-\mathrm{p}=1$
- $\mathrm{N}=(\mathrm{A} / \mathrm{C})^{(1 / 2 \mathrm{p})}$
- Logical Area $\propto \kappa^{2}$
- $\mathrm{N}^{\prime}=\left(\left(\mathrm{K}^{2} \mathrm{~A}\right) / \mathrm{C}\right)^{(1 / 2 \mathrm{p})}$
- $\mathrm{N}^{\prime}=(\mathrm{A} / \mathrm{C})^{(1 / 2 \mathrm{p})} \times\left(\kappa^{2}\right)^{(1 / 2 \mathrm{p})}$
- $N^{\prime}=N \times\left(\kappa^{2}\right)^{(1 / 2 p)}$
- $\mathrm{N}^{\prime}=\mathrm{N} \times(\kappa)^{(1 / \mathrm{p})}$

Penn ESE534 Spring2010 - DeHon

Recall from Day 7

Delays

- Logical capacities growing
- Wirelengths?
- No locality $\propto \kappa$
- Rent's Rule
$-\mathrm{L} \propto \mathrm{n}^{(p-0.5)}$
- [p>0.5]

What tell us about design?

- $10 \propto N^{P}$
- Bisection $\mathrm{BW} \propto \mathrm{N}^{P}$
- side length $\propto N^{P}$ -N if $\mathrm{p}<0.5$
- Area $\propto \mathrm{N}^{2 p}$ p>0.5
- Average Wire Length $\propto \mathrm{N}^{(p-0.5)}$ $p>0.5$

N.B. 2D VLSI world has "natural" Rent of $\mathrm{P}=0.5$ (area vs. perimeter)

Preclass 4

- Depth 20 circuit, 2-input gates
- Maximum number of gates?
- Topology?
- Rent p ?
- Minimum distance?
- Lower bound maximum length
- Depth 24 circuit
- Lower bound maximum length?

Rent's Rule Caveats

- Modern "systems" on a chip -- likely to contain subcomponents of varying Rent complexity
- Less I/O at certain "natural" boundaries
- System close
- Rent's Rule apply to workstation, PC, MP3 player, Smart Phone?

Area/Wire Length

- Bad news
- Area $\sim \Omega\left(\mathrm{N}^{2 \mathrm{p}}\right)$
- faster than N
- Avg. Wire Length $\sim \Omega\left(\mathrm{N}^{(p-0.5)}\right)$
- grows with N
- Can designers/CAD control p (locality) once appreciate its effects?
- I.e. maybe this cost changes design style/criteria so we mitigate effects?

Critical Path and Bisection

Minimum cut may cross critical path multiple times.
Minimizing long wires in critical path \rightarrow increase cut size.

Admin

- HW5 graded
- HW8 out - due April $12^{\text {th }}$
- Reading for Wed. on web

-

What Rent didn't tell us

- Bisection bandwidth purely geometrical
- No constraint for delay
- I.e. a partition may leave critical path weaving between halves

Original Memo

- Current Issue (Winter 2010, v2n1) of IEEE Solid-State Circuits Magazine
- Retrospect on IBM 1401 and E. F. Rent
- Including original memos
- Added link to reading

52

Big Ideas
 [MSB Ideas]

- Rent's rule characterizes locality

Fixed wire layers:
\rightarrow Area growth $\Omega\left(\mathrm{N}^{2 \mathrm{p}}\right)$
\rightarrow Wire Length $\Omega\left(\mathrm{N}^{(p-0.5)}\right)$

- $p>0.5 \rightarrow$ interconnect growing faster than compute elements
- expect interconnect to dominate other resources

