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ESE534: 
Computer Organization 

Day 17:  March 29, 2010 
Interconnect 2: Wiring 

Requirements and Implications 
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Previously 

•  Identified need for Interconnect 
•  Seen that interconnect can be 

expensive 
•  Identified need to understand/exploit 

structure in our interconnect design 
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Today 

•  Wiring Requirements 
•  Rent’s Rule 

– A model of structure 
•  Implications 
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Wires and VLSI 

•  Simple VLSI model 

– Have a small, finite number of wiring 
layers 
•  E.g.  

– one for horizontal wiring 
– one for vertical wiring 

– Assume wires can run over gates 

nand2 
– Gates have fixed size (Agate) 
– Wires have finite spacing (Wwire) 
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Visually: Wires and VLSI 
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nand2 xor2 

inv and2 

Preclass 1 

•  How many 40F×40F gates in  
     25,000F×25,000F region? 

•  How many wires can go in and out? 

•  Ratio? 
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Important Consequence 

•  A set of wires  

W = 7 Wwire 

•  take up space: 
       W = (N x Wwire) / Nlayers 

•  crossing a line 
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Thompson’s Argument 

•  The minimum area of a VLSI 
component  is bounded by the larger of: 
– The area to hold all the gates 

• Achip ≥ N × Agate 
– The area required by the wiring 

• Achip ≥ Nhorizontal Wwire × Nvertical Wwire  
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How many wires? 

•  We can get a lower bound on the total 
number of horizontal (vertical) wires by 
considering the bisection of the 
computational graph: 
– Cut the graph of gates in half 
– Minimize connections between halves 
– Count number of connections in cut 
– Gives a lower bound on number of wires 
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Bisection 

Bisection 
Width 

3 
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Next Question 

•  In general, if we: 
– Cut design in half 
– Minimizing cut wires 

•  How many wires will be in the 
bisection? N/2 

N/2 

cutsize 
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Arbitrary Graph 

•  Graph with N nodes 
•  Cut in half 

– N/2 gates on each side 
•  Worst-case? 

– Every gate output on each side 
–  Is used somewhere on other side 
– Cut contains N wires 
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Arbitrary Graph 

•  For a random graph 
– Something proportional to this is likely 

•  That is: 
– Given a random graph with N nodes 
– The number of wires in the bisection is likely 

to be:  c×N 
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Particular Computational 
Graphs 

•  Some important computations have 
exactly this property 
– FFT (Fast Fourier Transform) 
– Sorting 
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FFT 
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FFT 
•  Can implement with N/2 nodes 

– Group row together 

•  Any bisection will cut N/2 wire bundles 
– True for any reordering 
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Assembling what we know 

•  Achip ≥ N × Agate 

•  Achip ≥ Nhorizontal Wwire × Nvertical Wwire 

•  Nhorizontal = c × N 
•  Nvertical = c × N 

– [bound true recursively in graph] 
•  Achip ≥ cN Wwire × cN Wwire 
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Assembling … 

•  Achip ≥ N × Agate 

•  Achip ≥ cN Wwire × cN Wwire 

•  Achip ≥ (cN Wwire)2 
•  Achip ≥ N2 × cʹ′  
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Result 
•  Achip ≥ N × Agate 

•  Achip ≥ N2 × cʹ′  
•  Wire area grows faster than gate area 
•  Wire area grows with the square of gate 

area 
•  For sufficiently large N, 

– Wire area dominates gate area 

Preclass 2 

•  How does ratio change for  
   100,000 F×100,000 F region? 
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Intuitive Version 

•  Consider a region of a chip 
•  Gate capacity in the region goes as area 

(s2) 
•  Wiring capacity into region goes as 

perimeter (4s) 
•  Perimeter grows more slowly than area 

– Wire capacity saturates before gate 
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Result 
•  Achip ≥ N2 × cʹ′  
•  Wire area grows with the square of gate 

area 
•  Troubling: 

– To double the size of our 
computation 

– Must quadruple the size of our chip! 
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So what? 

What do we do with this 
observation? 
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First Observation 

•  Not all designs have this large of a 
bisection 

•  What is typical? 
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Array Multiplier 
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Shift Register 
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Bisection Width 1 

Regardless of size 
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Architecture ⇔ Structure 

•  Typical architecture trick: 
– exploit expected problem structure 

•  What structure do we have? 
•  Impact on resources required? 
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Bisection Bandwidth 
•  Bisection bandwidth of design  

lower bound on wire crossings 
–  important, first order property of a design. 
– Measure to characterize  

•  Rather than assume worst case 

•  Design with more locality 
 lower bisection bandwidth 

•  Enough? 
N/2 

N/2 

cutsize 
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Characterizing Locality 

•  Single cut not capture locality within 
halves 

•  Cut again  
 recursive bisection 
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Regularizing Growth 

•  How do bisection bandwidths shrink 
(grow) at different levels of bisection 
hierarchy? 

•  Basic assumption: Geometric 
– 1 
– 1/α 
– 1/α2 
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Geometric Growth 

•  (F,α)-bifurcator 
– F bandwidth at root 
– geometric regression α at each level 
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Good Model? 

Log-log plot  straight lines represent geometric growth 
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Rent’s Rule 

•  In the world of circuit design, an 
empirical relationship to capture: 

IO = c Np 

•  0≤p≤1 
•  p – characterizes interconnect richness 
•  Typical: 0.5≤p≤0.7 
•  “High-Speed” Logic p=0.67 
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Rent’s Rule 

•  In the world of circuit design, an 
empirical relationship to capture: 

IO = c Np 

•  compare (F,α)-bifurcator 
                 α= 2p 
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Rent and Locality 

•  Rent and IO quantifying locality 
–  local consumption 
–  local fanout 
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What tell us about design? 

•  Recursive bandwidth requirements in 
network 
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As a function of Bisection 
•  Achip ≥ N × Agate 

•  Achip ≥ Nhorizontal Wwire × Nvertical Wwire 
•  Nhorizontal = Nvertical  = IO = cNp 

•  Achip ≥ (cN)2p
 

•  If p<0.5 
                    Achip ∝ N 

•  If p>0.5 
                     Achip ∝ N2p  
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In terms of Rent’s Rule 

•  If p<0.5,      Achip ∝ N 

•  If p>0.5,      Achip ∝ N2p  

•  Typical designs have p>0.5 

→  interconnect dominates 
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What tell us about design? 

•  Recursive bandwidth requirements in 
network 
–  lower bound on resource requirements 

•  N.B. necessary but not sufficient 
condition on network design 
–   I.e. design must also be able to use the 

wires 
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What tell us about design? 

•  Interconnect lengths 
–  Intuition 

•  if p>0.5, everything cannot be nearest neighbor 
•  as p grows, so wire distances 

Can think of p as 
 dimensionallity: 
     p=1-1/d 

Preclass 3 

•  25,000 F side, 40F × 40 F gates 
•  Wire length? 
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Preclass 3 
•  What’s minimum length 

for longest wires? 

? 
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Generalizing  
Interconnect Lengths 

•  P>0.5 
•  Side is √(N) 
•  IO crossing it is Np 

•  What’s minimum length 
for longest wires? 

•  Implication: 
–  Wire lengths grow at least 

as fast as N(p-0.5) 

€ 

N

? 
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Delays 

•  Logical capacities growing 
•  Wirelengths? 

– No locality∝κ	


– Rent’s Rule 

•  L ∝n(p-0.5)   
•   [p>0.5]	



Recall from Day 7 
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Capacity 

•  Rent: IO=C*Np 

•  p>0.5 
•  A= C*N2p 

•  N=(A/C)(1/2p) 

•  Logical Area ∝κ2	



•  N’=((κ2A)/C)(1/2p) 

•  N’=(A/C)(1/2p) ×(κ2)(1/2p) 

•  N’=N ×(κ2)(1/2p) 

•  N’=N ×(κ)(1/p) 

•  Sanity Check 
–  p=1 
–  N2 = κN 

–  p~0.5 
–  N2 ∼ κ2 N 
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What tell us about design? 

•  IO∝NP 

•  Bisection BW∝NP 

•  side length ∝NP 

–  N if p<0.5 

•  Area ∝N2p 

p>0.5 
•  Average Wire 

Length ∝ N(p-0.5) 

p>0.5 

N.B. 2D VLSI world has 
         “natural” Rent of P=0.5 
         (area vs. perimeter) 

Preclass 4 

•  Depth 20 circuit, 2-input gates 
– Maximum number of gates? 

•  Topology? 
•  Rent p? 

– Minimum distance? 
– Lower bound maximum length 

•  Depth 24 circuit 
– Lower bound maximum length? 
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Rent’s Rule Caveats 

•  Modern “systems” on a chip -- likely to 
contain subcomponents of varying Rent 
complexity 

•  Less I/O at certain “natural” boundaries 
•  System close 

– Rent’s Rule apply to workstation, PC, MP3 
player, Smart Phone? 
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Area/Wire Length 
•  Bad news 

– Area ~ Ω(N2p) 
•  faster than N 

– Avg. Wire Length ~ Ω (N(p-0.5)) 
•  grows with N 

•  Can designers/CAD control p (locality) 
once appreciate its effects? 

•  I.e. maybe this cost changes design 
style/criteria so we mitigate effects? 

Penn ESE534 Spring2010 -- DeHon 
50 

What Rent didn’t tell us 

•  Bisection bandwidth purely geometrical 
•  No constraint for delay 

–  I.e. a partition may leave critical path 
weaving between halves 
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Critical Path and Bisection 

Minimum cut may cross critical path multiple times. 
Minimizing long wires in critical path  increase cut size. 

Original Memo 

•  Current Issue (Winter 2010, v2n1) of 
IEEE Solid-State Circuits Magazine 

•  Retrospect on IBM 1401 and E. F. Rent 
–  Including original memos 

•  Added link to reading 
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Admin 

•  HW5 graded 
•  HW8 out – due April 12th  
•  Reading for Wed. on web 
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Big Ideas 
[MSB Ideas] 

•  Rent’s rule characterizes locality 
Fixed wire layers: 
 Area growth Ω (N2p) 
 Wire Length Ω (N(p-0.5)) 

•   p>0.5 interconnect growing faster 
than compute elements 
– expect interconnect to dominate other 

resources 


