
1

Penn ESE534 Spring2010 -- DeHon
1

ESE534:
Computer Organization

Day 2: January 20, 2010
Universality, Gates, Logic

Work Preclass Exercise

Penn ESE534 Spring2010 -- DeHon
2

Last Time

•  Computational Design as an
Engineering Discipline

•  Importance of Costs

Penn ESE534 Spring2010 -- DeHon
3

Today

•  Universality
•  Simple abstract computing building blocks

– gates, Boolean Equations
– RTL Logic (at least the logic part)

•  Logic in Gates
– optimization
– properties
– Costs

Preclass 1

•  Do the Case 1 circuits calculate the
same thing?

•  Case 2?

Penn ESE534 Spring2010 -- DeHon
4

General

•  How do we define equivalence?
– How do we determine if two circuits are

equivalent?

Penn ESE534 Spring2010 -- DeHon
5

Penn ESE534 Spring2010 -- DeHon
6

Model: Stateless Functions
(Combinational Logic)

•  Compute some “function”
–  f(i0,i1,…in) → o0,o1,…om

•  Each unique input vector
–  implies a particular, deterministic, output

vector

2

Boolean Equivalence

•  Two functions are equivalent when
– They have the same outputs for every input

vector
–  i.e., they have the same truth table

•  There is a canonical specification for a
Boolean function
–  its Truth Table

Penn ESE534 Spring2010 -- DeHon
7

Penn ESE534 Spring2010 -- DeHon
8

Implementation in Gates

•  Gate: small Boolean function
•  Goal: assemble gates to cover our

desired Boolean function

•  Collection of gates should implement
same function

•  I.e. collection of gates and Boolean
function should have same Truth Table

Penn ESE534 Spring2010 -- DeHon
9

Netlist

•  Netlist: collection of interconnected
gates
– A list of all the gates and what they are

connected to

Implementation

•  How can I implement any Boolean
function with gates?

Penn ESE534 Spring2010 -- DeHon
10

Implementation
•  Single output {0, 1}

– Use inverters to produce complements of
inputs

– For each input case (minterm)
•  If output is a 1

– Develop an AND to detect that case
» Decompose AND into gates

– OR together all such minterms
•  Decompose OR into gates

•  Multiple outputs
– Repeat for each output

Penn ESE534 Spring2010 -- DeHon
11

Universal set of primitives

•  What primitives did I need to support
previous implementation set?

•  Conclude: can implement any Boolean
function by a netlist of gates selected
from a small set.

•  Homework (B.1): How small can set be?

Penn ESE534 Spring2010 -- DeHon
12

3

Penn ESE534 Spring2010 -- DeHon
13

Boolean Equations
•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c
•  Another way to

express Boolean
functions

 a b c o
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

Penn ESE534 Spring2010 -- DeHon
14

Boolean Equations
•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c
•  Another way to

express Boolean
functions

 a b c o
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

Boolean Equations

•  Can be more compact:
 O=a*b*c*d*e+/a*/b*/c*/d*/e

•  Often use in Register Transfer
Language (RTL) expressions
– Write logic (boolean equations) occur

between registers
– Homework 1 A.3 (deferred to HW2)

Penn ESE534 Spring2010 -- DeHon
15

Penn ESE534 Spring2010 -- DeHon
16

If’s

•  If (a*b + /a*/b)
 c=d

•  else
 c=e

•  t=a*b+/a*/b
•  c=t*d + /t*e

How does this turn
into Boolean logic?

Penn ESE534 Spring2010 -- DeHon
17

IfMux Conversion

•  Often convenient to think of IF’s as
Multiplexers

•  If (a*b + /a*/b)
 c=d

•  else
 c=e

Penn ESE534 Spring2010 -- DeHon
18

Muxes

•  Mux:
– Selects one of two (several) inputs based

on control bit

4

Penn ESE534 Spring2010 -- DeHon
19

Mux Logic

•  Of course, Mux is just logic:
– mux out = /s*a + s*b

•  Two views logically equivalent
– mux view more natural/abstract when

inputs are multibit values (datapaths)

Penn ESE534 Spring2010 -- DeHon
20

Engineering Goal

•  Minimize resources
– area, gates

•  Exploit structure of logic

•  “An Engineer can do for a dime what
everyone else can do for a dollar.”

Penn ESE534 Spring2010 -- DeHon
21

Sum of Products

•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

•  o=(a+b)(/b+/c)
– a*b+a*/c+b*/c

•  o=(a+/b)(b+c)+/b*/c
– a*b+a*c+/b*c +/b*/c

Penn ESE534 Spring2010 -- DeHon
22

Minimum Sum of Products

•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

/b*c + b*/c

Penn ESE534 Spring2010 -- DeHon
23

Minimum Sum of Products

•  o=(a+b)(/b+/c)

0 0 1 1 1
1 0 0 0 1

00 01 11 10
ab

c a*/b+a*/c+b*/c

a*/b + b*/c

a*/b+a*/c+b*/c

Term a*/c is redundant

Penn ESE534 Spring2010 -- DeHon
24

Least Cost is not always MSP

•  o=(a+b)(c+d) 3 2-input gates
– a*b+a*c+b*c +b*d
–  (a*b+a*c)+(b*c+b*d) 7 2-input gates

•  Product of Sums smaller…

5

Logic Optimization

•  There are many logical equivalent
specifications for a function.

•  Freedom to choose
•  Exploit to select one that costs the least

•  Potentially different from the one
specified by the designer

Penn ESE534 Spring2010 -- DeHon
25

Cheapest?

•  Which of the equivalent solutions is
cheapest depends on the cost model.

Penn ESE534 Spring2010 -- DeHon
26

Penn ESE534 Spring2010 -- DeHon
27

Minimize Area

•  Area minimizing solutions depends on
the technology cost structure

•  Consider:
–  I1: ((a*b) + (c*d))*e*f
–  I2: ((a*b*e*f)+(c*d*e*f))

•  Area:
–  I1: 2*A(and2)+1*A(or2)+1*A(and3)
–  I2: 2*A(and4)+1*A(or2)

Penn ESE534 Spring2010 -- DeHon
28

Minimize Area

–  I1: ((a*b) + (c*d))*e*f
–  I2: ((a*b*e*f)+(c*d*e*f))

•  Area:
–  I1: 2*A(and2)+1*A(or2)+1*A(and3)
–  I2: 2*A(and4)+1*A(or2)

•  all gates take unit area:
  A(l2)=3 < A(l1)=4

•  gate size proportional to number of inputs:
  A(I1)=2*2+2+3=9 < A(I2)=2*4+2=10

Penn ESE534 Spring2010 -- DeHon
29

Best Solution Depends on
Costs

•  This is a simple instance of the general
point:
…When technology costs change
 the optimal solution changes.

•  In this case, we can develop an algorithm
that takes the costs as a parameter.

Penn ESE534 Spring2010 -- DeHon
30

Don’t Cares
•  Sometimes will have incompletely

specified functions:
 a b c o
 0 0 0 1
 0 0 1 1
 0 1 0 1
 0 1 1 x
 1 0 0 x
 1 0 1 0
 1 1 0 0
 1 1 1 0

6

Penn ESE534 Spring2010 -- DeHon
31

Don’t Cares
•  Will want to pick don’t care values to

minimize implementation costs:
 a b c o
 0 0 0 1
 0 0 1 1
 0 1 0 1
 0 1 1 x
 1 0 0 x
 1 0 1 0
 1 1 0 0
 1 1 1 0

 a b c o
 0 0 0 1
 0 0 1 1
 0 1 0 1
 0 1 1 1
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 0 Penn ESE534 Spring2010 -- DeHon

32

NP-hard in General

•  Logic Optimization
– Two Level Minimization
– Covering w/ reconvergent fanout

•  Are NP-hard in general
– …but that’s not to say it’s not viable to find

an optimal solution.
•  Cover how to attack in an ESE535

– can point you at rich literature
– can find software to do it for you

See end of
Slide set

Penn ESE534 Spring2010 -- DeHon
33

Delay in Gates

•  Simple model:
– each gate contributes a fixed delay for

passing through it
– can be different delay for each gate type
– e.g.

•  inv = 10ps
•  nand2=15ps
•  nand3=20ps
•  and2=22ps

Penn ESE534 Spring2010 -- DeHon
34

Path Delay

•  Simple Model: Delay along path is the
sum of the delays of the gates in the path

Path Delay = Delay(And3i2)+Delay(Or2)

Penn ESE534 Spring2010 -- DeHon
35

Critical Path

•  Path lengths in circuit may differ
•  Worst-case performance of circuit

determined by the longest path
•  Longest path designated Critical Path

Penn ESE534 Spring2010 -- DeHon
36

Multiple Paths

Path Delay = Delay(And3i2)+Delay(Or2)

Path Delay = Delay(Or2i1)+Delay(And2)+Delay(Or2)

7

Penn ESE534 Spring2010 -- DeHon
37

Critical Path = Longest

Path Delay = 2

Path Delay = 3

Penn ESE534 Spring2010 -- DeHon
38

Critical Path

•  There is always a set of critical paths
– set such that the path length of the

members is at least as long as any other
path length

•  May be many such paths

Penn ESE534 Spring2010 -- DeHon
39

Delay also depend on Costs

•  Consider again:
–  I1: ((a*b) + (c*d))*e*f
–  I2: ((a*b*e*f)+(c*d*e*f))

•  Delay:
–  I1: D(and2)+D(or2)+D(and3)
–  I2: D(and4)+D(or2)

Penn ESE534 Spring2010 -- DeHon
40

Delay also depend on Costs

•  Delay:
–  I1: D(and2)+D(or2)+D(and3)
–  I2: D(and4)+D(or2)

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps
 D(I2)=(33+D(or2))<D(I1)=(22+27+D(or2))

Gate Delay

Penn ESE534 Spring2010 -- DeHon
41

Why delay increase with number inputs?

Penn ESE534 Spring2010 -- DeHon
42

Delay also depend on Costs

•  Delay:
–  I1: D(and2)+D(or2)+D(and3)
–  I2: D(and4)+D(or2)

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps
 D(I2)=(33+D(or2))<D(I1)=(22+27+D(or2))

•  D(and2)=22ps, D(and3)=27ps, D(and4)=55ps
 D(I2)=(55+D(or2))>D(I1)=(22+27+D(or2))

8

Penn ESE534 Spring2010 -- DeHon
43

Delay and Area Optimum Differ
–  I1: ((a*b) + (c*d))*e*f
–  I2: ((a*b*e*f)+(c*d*e*f))

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps
  D(I2)<D(I1)

•  gate size proportional to number of inputs:
  A(I1)<A(I2)

•  Induced Tradeoff -- cannot always
simultaneously minimize area and delay cost

Penn ESE534 Spring2010 -- DeHon
44

Does delay in Gates make
Sense?

•  Consider a balanced tree of logic gates
of depth (tree height) n.

•  Does this have delay n?
–  (unit delay gates)

•  How big is it? (unit gate area)
•  How long a side?
•  Minimum wire length from input to

output?

Penn ESE534 Spring2010 -- DeHon
45

Delay in Gates make Sense?
•  (continuing example)
•  How big is it? (unit gate area) 2n
•  How long a side? Sqrt(2n)= 2(n/2)
•  Minimum wire length from input to

output?
– 2*2(n/2)

•  Delay per unit length? (speed of light
limit)
– Delay∝2(n/2)

Penn ESE534 Spring2010 -- DeHon
46

It’s not all about costs...
•  …or maybe it is, just not always about a

single, linear cost.
•  Must manage complexity

– Cost of developing/verifying design
– Size of design can accomplish in fixed time

•  (limited brainpower)

•  Today: human brainpower is most often
the bottleneck resource limiting what we
can build.

Penn ESE534 Spring2010 -- DeHon
47

Admin: Reminder
•  Slides on web (morning before class)

– Post-class may updated if feedback/class
indicates something unclear

•  Reading: Monday’s on Blackboard
•  Assignment 1 Due Monday

– Beginning of class
– Note deferring A.3/C.2 to HW2

•  Feedback sheets
– Office hour preferences / constraints

Penn ESE534 Spring2010 -- DeHon
48

Big Ideas
[MSB Ideas]

•  Can implement any Boolean function in
gates
– Small set of gates are universal, allowing

us to implement any Boolean function

9

Penn ESE534 Spring2010 -- DeHon
49

Big Ideas
[MSB-1 Ideas]

•  Canonical representation for
combinational logic

•  Transformation
– don’t have to implement the input literally
– only have to achieve same semantics
–  trivial example: logic minimization

•  Minimum depends on cost model
•  Often tradeoff between costs (area-delay)

Post Lecture

•  Fanout: output of gate drives inputs of
more than one gate

•  Reconvergent Fanout: multiple of the
gates consuming one gates output
contribute toward an output

Penn ESE534 Spring2010 -- DeHon
50

Penn ESE534 Spring2010 -- DeHon
51

Reconvergent Fanout

A

D

C

B

E

Fanout:
Output of A is
Used by both C and D

Reconvergence:
C and D both are
inputs to E

Penn ESE534 Spring2010 -- DeHon
52

Non-Reconvergent Fanout

A

D

C

B

Fanout:
Output of A is
Used by both C and D

Post Lecture: NP-Hard

•  NP-Hard
– http://www.claymath.org/millennium/

P_vs_NP/
– Essay targeted at non-expert: http://

vlsicad.eecs.umich.edu/BK/Slots/cache/
www.cs.chalmers.se/~een/PeqNP.ps

Penn ESE534 Spring2010 -- DeHon
53

