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ESE534: 
Computer Organization 

Day 2:  January 20, 2010 
Universality, Gates, Logic 

Work Preclass Exercise 
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Last Time 

•  Computational Design as an 
Engineering Discipline 

•  Importance of Costs 
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Today 

•  Universality 
•  Simple abstract computing building blocks 

– gates, Boolean Equations 
– RTL Logic (at least the logic part) 

•  Logic in Gates 
– optimization 
– properties 
– Costs 

Preclass 1 

•  Do the Case 1 circuits calculate the 
same thing? 

•  Case 2? 
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General 

•  How do we define equivalence? 
– How do we determine if two circuits are 

equivalent? 

Penn ESE534 Spring2010 -- DeHon 
5 

Penn ESE534 Spring2010 -- DeHon 
6 

Model: Stateless Functions 
(Combinational Logic) 

•  Compute some “function” 
–  f(i0,i1,…in) → o0,o1,…om 

•  Each unique input vector  
–  implies a particular, deterministic, output 

vector 



2 

Boolean Equivalence 

•  Two functions are equivalent when 
– They have the same outputs for every input 

vector 
–  i.e., they have the same truth table 

•  There is a canonical specification for a 
Boolean function 
–  its Truth Table 
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Implementation in Gates 

•  Gate: small Boolean function 
•  Goal: assemble gates to cover our 

desired Boolean function  

•  Collection of gates should implement 
same function 

•  I.e. collection of gates and Boolean 
function should have same Truth Table 
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Netlist 

•  Netlist: collection of interconnected 
gates 
– A list of all the gates and what they are 

connected to 

Implementation 

•  How can I implement any Boolean 
function with gates? 
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Implementation 
•  Single output {0, 1} 

– Use inverters to produce complements of 
inputs 

– For each input case (minterm) 
•  If output is a 1 

– Develop an AND to detect that case 
» Decompose AND into gates 

– OR together all such minterms 
•  Decompose OR into gates 

•  Multiple outputs 
– Repeat for each output 
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Universal set of primitives 

•  What primitives did I need to support 
previous implementation set? 

•  Conclude: can implement any Boolean 
function by a netlist of gates selected 
from a small set. 

•  Homework (B.1): How small can set be?  
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Boolean Equations 
•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c 
•  Another way to  

express Boolean 
functions 

 a  b  c    o 
 0  0  0   0 
 0  0  1   1 
 0  1  0   1 
 0  1  1   0 
 1  0  0   0 
 1  0  1   1 
 1  1  0   1 
 1  1  1   0 
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Boolean Equations 
•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c 
•  Another way to  

express Boolean 
functions 

 a  b  c    o 
 0  0  0   0 
 0  0  1   1 
 0  1  0   1 
 0  1  1   0 
 1  0  0   0 
 1  0  1   1 
 1  1  0   1 
 1  1  1   0 

Boolean Equations 

•  Can be more compact: 
    O=a*b*c*d*e+/a*/b*/c*/d*/e 

•  Often use in Register Transfer 
Language (RTL) expressions 
– Write logic (boolean equations) occur 

between registers 
– Homework 1 A.3 (deferred to HW2) 
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If’s 

•  If (a*b + /a*/b) 
   c=d 

•  else 
   c=e 

•  t=a*b+/a*/b 
•  c=t*d + /t*e 

How does this turn 
into Boolean logic? 
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IfMux Conversion 

•  Often convenient to think of IF’s as 
Multiplexers 

•  If (a*b + /a*/b) 
   c=d 

•  else 
   c=e 
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Muxes 

•  Mux: 
– Selects one of two (several) inputs based 

on control bit 
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Mux Logic 

•  Of course, Mux is just logic: 
– mux out = /s*a + s*b 

•  Two views logically equivalent 
– mux view more natural/abstract when 

inputs are multibit values (datapaths) 
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Engineering Goal 

•  Minimize resources  
– area, gates 

•  Exploit structure of logic 

•  “An Engineer can do for a dime what 
everyone else can do for a dollar.”   
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Sum of Products 

•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c 

•  o=(a+b)(/b+/c) 
– a*b+a*/c+b*/c 

•  o=(a+/b)(b+c)+/b*/c 
– a*b+a*c+/b*c +/b*/c 
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Minimum Sum of Products 

•  o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c 

/b*c + b*/c 
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Minimum Sum of Products 

•  o=(a+b)(/b+/c) 

0   0  1   1  1 
1   0  0   0  1 

00 01 11 10 
ab 

c a*/b+a*/c+b*/c 

a*/b + b*/c 

a*/b+a*/c+b*/c 

Term a*/c is redundant 
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Least Cost is not always MSP 

•  o=(a+b)(c+d)                3 2-input gates 
– a*b+a*c+b*c +b*d 
–  (a*b+a*c)+(b*c+b*d)           7 2-input gates 

•  Product of Sums smaller… 
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Logic Optimization 

•  There are many logical equivalent 
specifications for a function. 

•  Freedom to choose 
•  Exploit to select one that costs the least 

•  Potentially different from the one 
specified by the designer 
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Cheapest? 

•  Which of the equivalent solutions is 
cheapest depends on the cost model. 
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Minimize Area 

•  Area minimizing solutions depends on 
the technology cost structure 

•  Consider: 
–  I1: ((a*b) + (c*d))*e*f 
–  I2: ((a*b*e*f)+(c*d*e*f)) 

•  Area: 
–  I1: 2*A(and2)+1*A(or2)+1*A(and3) 
–  I2: 2*A(and4)+1*A(or2) 
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Minimize Area 

–  I1: ((a*b) + (c*d))*e*f 
–  I2: ((a*b*e*f)+(c*d*e*f)) 

•  Area: 
–  I1: 2*A(and2)+1*A(or2)+1*A(and3) 
–  I2: 2*A(and4)+1*A(or2) 

•  all gates take unit area: 
  A(l2)=3 < A(l1)=4 

•  gate size proportional to number of inputs: 
   A(I1)=2*2+2+3=9 < A(I2)=2*4+2=10 
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Best Solution Depends on 
Costs 

•  This is a simple instance of the general 
point: 
…When technology costs change 
        the optimal solution changes. 

•  In this case, we can develop an algorithm 
that takes the costs as a parameter. 
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Don’t Cares 
•  Sometimes will have incompletely 

specified functions: 
 a  b  c    o 
 0  0  0   1 
 0  0  1   1 
 0  1  0   1 
 0  1  1   x 
 1  0  0   x 
 1  0  1   0 
 1  1  0   0 
 1  1  1   0 
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Don’t Cares 
•  Will want to pick don’t care values to 

minimize implementation costs: 
 a  b  c    o 
 0  0  0   1 
 0  0  1   1 
 0  1  0   1 
 0  1  1   x 
 1  0  0   x 
 1  0  1   0 
 1  1  0   0 
 1  1  1   0 

 a  b  c    o 
 0  0  0   1 
 0  0  1   1 
 0  1  0   1 
 0  1  1   1 
 1  0  0   0 
 1  0  1   0 
 1  1  0   0 
 1  1  1   0 Penn ESE534 Spring2010 -- DeHon 
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NP-hard in General 

•  Logic Optimization 
– Two Level Minimization 
– Covering w/ reconvergent fanout  

•  Are NP-hard in general 
– …but that’s not to say it’s not viable to find 

an optimal solution. 
•  Cover how to attack in an ESE535 

– can point you at rich literature 
– can find software to do it for you 

See end of 
Slide set 
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Delay in Gates 

•  Simple model: 
– each gate contributes a fixed delay for 

passing through it 
– can be different delay for each gate type 
– e.g. 

•  inv = 10ps 
•  nand2=15ps 
•  nand3=20ps 
•  and2=22ps 
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Path Delay 

•  Simple Model: Delay along path is the 
sum of the delays of the gates in the path 

Path Delay = Delay(And3i2)+Delay(Or2) 
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Critical Path 

•  Path lengths in circuit may differ 
•  Worst-case performance of circuit 

determined by the longest path 
•  Longest path designated Critical Path 
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Multiple Paths 

Path Delay = Delay(And3i2)+Delay(Or2) 

Path Delay = Delay(Or2i1)+Delay(And2)+Delay(Or2) 
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Critical Path = Longest 

Path Delay = 2 

Path Delay = 3 
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Critical Path 

•  There is always a set of critical paths 
– set such that the path length of the 

members is at least as long as any other 
path length 

•  May be many such paths 
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Delay also depend on Costs 

•  Consider again: 
–  I1: ((a*b) + (c*d))*e*f 
–  I2: ((a*b*e*f)+(c*d*e*f)) 

•  Delay: 
–  I1: D(and2)+D(or2)+D(and3) 
–  I2: D(and4)+D(or2) 
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Delay also depend on Costs 

•  Delay: 
–  I1: D(and2)+D(or2)+D(and3) 
–  I2: D(and4)+D(or2) 

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps 
 D(I2)=(33+D(or2))<D(I1)=(22+27+D(or2)) 

Gate Delay 
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Why delay increase with number inputs? 
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Delay also depend on Costs 

•  Delay: 
–  I1: D(and2)+D(or2)+D(and3) 
–  I2: D(and4)+D(or2) 

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps 
 D(I2)=(33+D(or2))<D(I1)=(22+27+D(or2)) 

•  D(and2)=22ps, D(and3)=27ps, D(and4)=55ps 
 D(I2)=(55+D(or2))>D(I1)=(22+27+D(or2)) 
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Delay and Area Optimum Differ 
–  I1: ((a*b) + (c*d))*e*f 
–  I2: ((a*b*e*f)+(c*d*e*f)) 

•  D(and2)=22ps, D(and3)=27ps, D(and4)=33ps 
  D(I2)<D(I1) 

•  gate size proportional to number of inputs: 
  A(I1)<A(I2) 

•  Induced Tradeoff -- cannot always 
simultaneously minimize area and delay cost 
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Does delay in Gates make 
Sense? 

•  Consider a balanced tree of logic gates 
of depth (tree height) n. 

•  Does this have delay n? 
–   (unit delay gates) 

•  How big is it? (unit gate area) 
•  How long a side? 
•  Minimum wire length from input to 

output? 
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Delay in Gates make Sense? 
•  (continuing example) 
•  How big is it? (unit gate area)   2n 
•  How long a side?    Sqrt(2n)= 2(n/2) 
•  Minimum wire length from input to 

output? 
– 2*2(n/2) 

•  Delay per unit length? (speed of light 
limit) 
– Delay∝2(n/2) 
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It’s not all about costs... 
•  …or maybe it is, just not always about a 

single, linear cost. 
•  Must manage complexity 

– Cost of developing/verifying design 
– Size of design can accomplish in fixed time  

•  (limited brainpower) 

•  Today: human brainpower is most often 
the bottleneck resource limiting what we 
can build. 
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Admin: Reminder 
•  Slides on web (morning before class) 

– Post-class may updated if feedback/class 
indicates something unclear 

•  Reading: Monday’s on Blackboard 
•  Assignment 1 Due Monday 

– Beginning of class 
– Note deferring A.3/C.2 to HW2 

•  Feedback sheets 
– Office hour preferences / constraints 
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Big Ideas 
[MSB Ideas] 

•  Can implement any Boolean function in 
gates 
– Small set of gates are universal, allowing 

us to implement any Boolean function 
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Big Ideas 
[MSB-1 Ideas] 

•  Canonical representation for 
combinational logic 

•  Transformation 
– don’t have to implement the input literally 
– only have to achieve same semantics  
–  trivial example: logic minimization 

•  Minimum depends on cost model 
•  Often tradeoff between costs (area-delay) 

Post Lecture 

•  Fanout: output of gate drives inputs of 
more than one gate 

•  Reconvergent Fanout:  multiple of the 
gates consuming one gates output 
contribute toward an output 
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Reconvergent Fanout 

A 

D 

C 

B 

E 

Fanout:  
Output of A is 
Used by both C and D 

Reconvergence: 
C and D both are 
inputs to E 
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Non-Reconvergent Fanout 

A 

D 

C 

B 

Fanout:  
Output of A is 
Used by both C and D 

Post Lecture: NP-Hard 

•  NP-Hard 
– http://www.claymath.org/millennium/

P_vs_NP/ 
– Essay targeted at non-expert: http://

vlsicad.eecs.umich.edu/BK/Slots/cache/
www.cs.chalmers.se/~een/PeqNP.ps 
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