

Model: Stateless Functions (Combinational Logic)

• Compute some "function" $-f(i_0,i_1,...i_n) \rightarrow o_0,o_1,...o_m$

nn ESE534 Spring2010 -- DeHor

Each unique input vector

 implies a particular, deterministic, output vector

1

6

- Two functions are equivalent when

 They have the same outputs for every input vector
 - -i.e., they have the same truth table
- There is a **canonical** specification for a Boolean function
 - its Truth Table

Penn ESE534 Spring2010 -- DeHon

Implementation in Gates

- Gate: small Boolean function
- Goal: assemble gates to *cover* our desired Boolean function
- Collection of gates should implement *same* function
- I.e. collection of gates and Boolean function should have same Truth Table

enn ESE534 Spring2010 -- DeHon

7

11

Multiple outputs

<section-header>
Universal set of primitives
What primitives did I need to support previous implementation set?
Conclude: can implement any Boolean function by a netlist of gates selected from a small set.
Homework (B.1): How small can set be?

Boolean Equations

 o=/a*/b*c+/a*b*/c+a*b* 	/c+a*/b*c	
 Another way to 	abc o	
express Boolean	$0 \ 0 \ 0 \ 0$	
functions	0 0 1 1	
	0 1 0 1	
	$0 \ 1 \ 1 \ 0$	
	$1 \ 0 \ 0 \ 0$	
	1 0 1 1	
	1 1 0 1	
	$1 \ 1 \ 1 \ 0$	13
enn ESE534 Spring2010 DeHon		.5

Boolean Eq	juations
 o=/a*/b*c+/a*b*/c+a*b 	o*/c+a*/b*c
 Another way to express Boolean functions 	a b c o 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0
Penn ESE534 Spring2010 DeHon	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 Don't Cares

 • Sometimes will have incompletely specified functions:

 a b c o

 0 0 0 1

 0 0 0 1

 0 0 1 1

 0 1 0 1

 0 1 1 x

 1 0 0 x

 1 0 1 0

 1 1 0

 1 1 0

 1 0 1

 0 1 1

 0 1 1

 0 1 3

Don	t Cares
Will want to pick d minimize impleme	
abc o	abc o
0 0 0 1	0 0 0 1
0 0 1 1	0 0 1 1
0 1 0 1	0 1
0 1 1 x	0 1 1 1
100 x	$1 \ 0 \ 0 \ 0$
1 0 1 0	1 0 1 0
1 1 0 0	$1 \ 1 \ 0 \ 0$
Penn ESE534 Spring2018 - DeHorl 0	1 1 1 0 31

Delay and Area Optimum Differ

- I1: ((a*b) + (c*d))*e*f

nn ESE534 Spring2010 -- DeHon

- − I2: ((a*b*e*f)+(c*d*e*f))
 D(and2)=22ps, D(and3)=27ps, D(and4)=33ps
 D(I2)<D(I1)
- gate size proportional to number of inputs:
 A(I1)<A(I2)
- Induced Tradeoff -- cannot always simultaneously minimize area and delay cost

43

Does delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n?
 (unit delay gates)
- How big is it? (unit gate area)
- · How long a side?
- Minimum wire length from input to output?

nn ESE534 Spring2010 -- DeHon

44

- ...or maybe it is, just not always about a single, linear cost.
- · Must manage complexity
 - Cost of developing/verifying design
 - Size of design can accomplish in fixed time
 (limited brainpower)
- Today: human brainpower is most often the bottleneck resource limiting what we can build.
 ESE534 Spring2010 - DeHon

Admin: Reminder • Slides on web (morning before class) – Post-class may updated if feedback/class indicates something unclear • Reading: Monday's on Blackboard • Assignment 1 Due Monday – Beginning of class – Note deferring A.3/C.2 to HW2 • Feedback sheets

– Office hour preferences / constraints

47

Penn ESE534 Spring2010 -- DeHon

<section-header><section-header><list-item><list-item><list-item><list-item><equation-block>

Big Ideas [MSB-1 Ideas]

- Canonical representation for combinational logic
- Transformation
 - don't have to implement the input literally
 - only have to achieve same semantics
 - trivial example: logic minimization
- Minimum depends on cost model
- Often tradeoff between costs (area-delay)

enn ESE534 Spring2010 -- DeHon

