ESE534: Computer Organization	
Day 2: January 20, 2010	
Universality, Gates, Logic	
Work Preclass Exercise	
*Penn	

Today

- Universality
- Simple abstract computing building blocks
- gates, Boolean Equations
- RTL Logic (at least the logic part)
- Logic in Gates
- optimization
- properties
- Costs

Penn ESE534 Spring2010 - DeHon

Today
- Universality
- Simple abstract computing building blocks
- gates, Boolean Equations
- RTL Logic (at least the logic part)
- Logic in Gates
- optimization
- properties
- Costs
Penn EsE534 sping2010- Derton

Last Time

- Computational Design as an Engineering Discipline
- Importance of Costs

Model: Stateless Functions (Combinational Logic)

- Compute some "function"
$-\mathrm{f}\left(\mathrm{i}_{0}, \mathrm{i}_{1}, \ldots \mathrm{i}_{\mathrm{n}}\right) \rightarrow \mathrm{o}_{0}, \mathrm{o}_{1}, \ldots \mathrm{o}_{\mathrm{m}}$
- Each unique input vector
- implies a particular, deterministic, output vector

Boolean Equivalence

- Two functions are equivalent when
- They have the same outputs for every input vector
- i.e., they have the same truth table
- There is a canonical specification for a Boolean function
- its Truth Table

Netlist

- Netlist: collection of interconnected gates
- A list of all the gates and what they are

Implementation

- Single output $\{0,1\}$
- Use inverters to produce complements of inputs
- For each input case (minterm)
- If output is a 1
- Develop an AND to detect that case » Decompose AND into gates
- OR together all such minterms
- Decompose OR into gates
- Multiple outputs
- Repeat for each output

11

Implementation in Gates

- Gate: small Boolean function
- Goal: assemble gates to cover our desired Boolean function
- Collection of gates should implement same function
- l.e. collection of gates and Boolean function should have same Truth Table

Implementation

- How can I implement any Boolean function with gates?

Universal set of primitives

- What primitives did I need to support previous implementation set?
- Conclude: can implement any Boolean function by a netlist of gates selected from a small set.
- Homework (B.1): How small can set be?

Penn ESE534 Spring2010 -- DeHon

Boolean Equations

- $o=/ a^{*} / b^{*} c+/ a^{*} b^{*} / c+a^{*} b^{*} / c+a^{*} / b^{*} c$
- Another way to
abco express Boolean 0000 functions

0011
0101
0110
1000
1011
1101
1110
13
Penn ESE534 Spring2010 - DeHon

Boolean Equations

- Can be more compact:
$O=a^{*} b^{*} c^{*} d^{*} e+/ a^{*} / b^{*} / c^{*} / d^{*} / e$
- Often use in Register Transfer

Language (RTL) expressions

- Write logic (boolean equations) occur between registers
- Homework 1 A. 3 (deferred to HW2)

Penn ESE534 Spring2010 - DeHon

Muxes

- Mux:
- Selects one of two (several) inputs based on control bit

Penn ESE534 Spring2010 - DeHon

Sum of Products

- $o=/ a^{*} / b^{*} c+/ a^{*} b^{*} / c+a^{*} b^{*} / c+a^{*} / b^{*} c$
- $o=(a+b) /(b+/ c)$
$-a^{*} b+a^{*} / c+b^{*} / c$
- $o=(a+/ b)(b+c)+/ b^{*} / c$
$-a^{*} b+a^{*} c+/ b^{*} c+/ b^{*} / c$
Penn ESE534 Spring2010 - DeHon

Minimum Sum of Products

- $o=(a+b)(/ b+/ c)$
$a^{*} / b+a^{*} / c+b^{*} / c$
$a^{*} / b+a^{*} / c+b^{*} / c$

ab

$a^{*} / b+b^{*} / c$
Term $\mathrm{a}^{*} / \mathrm{c}$ is redundant

Engineering Goal

- Minimize resources
- area, gates
- Exploit structure of logic
- "An Engineer can do for a dime what everyone else can do for a dollar."

Least Cost is not always MSP

- $o=(a+b)(c+d)$
- a*b+a*c+b*c +b*d
$-\left(a^{*} b+a^{*} c\right)+\left(b^{*} c+b^{*} d\right) \quad 7$ 2-input gates
- Product of Sums smaller...

Logic Optimization

- There are many logical equivalent specifications for a function.
- Freedom to choose
- Exploit to select one that costs the least
- Potentially different from the one specified by the designer

Minimize Area

- Area minimizing solutions depends on the technology cost structure
- Consider:
- I1: ((a*b) + (c*d)) ${ }^{*} e^{*} f$
- I2: ((a* $\left.\left.b^{*} e^{\star f}\right)+\left(c^{*} d^{*} e^{* f}\right)\right)$
- Area:

- I2: $2^{*} A$ (and4) ${ }^{*}$ $^{*} A($ or2 $)$

Best Solution Depends on Costs

- This is a simple instance of the general point:
...When technology costs change
\rightarrow the optimal solution changes.
- In this case, we can develop an algorithm that takes the costs as a parameter.

Cheapest?

- Which of the equivalent solutions is cheapest depends on the cost model.

26

Minimize Area

- I1: ((a*b) + (c*d))**e*
- I2: ((a*b*e*f)+(c*d*e*f))
- Area:
- I1: 2*A(and2)+1*A(or2)+1*A(and3)
- I2: 2*A(and4)+1*A(or2)
- all gates take unit area:
- A(12)=3 < A(11)=4
- gate size proportional to number of inputs:
- $A(11)=2 * 2+2+3=9<A(12)=2 * 4+2=10$

28
Penn ESE534 Spring2010

Don't Cares

- Sometimes will have incompletely specified functions:
a b c o
0001
$\begin{array}{llll}0 & 0 & 1\end{array}$
0101
011 x
100 x
1010
1100
11 - $\mathrm{DH}_{\mathrm{Hol}} 10$

Don't Cares

- Will want to pick don't care values to minimize implementation costs:

a b coo	a b c o
0001	0001
$\begin{array}{lllll}0 & 0 & 1\end{array}$	0011
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	0101
011 x	$\begin{array}{lllll}0 & 1 & 1\end{array}$
100 x	1000
1010	1010
1100	1100
$11.1{ }^{\text {Holl }} 0$	1110

Delay in Gates

- Simple model:
- each gate contributes a fixed delay for passing through it
- can be different delay for each gate type
- e.g.
- inv $=10 \mathrm{ps}$
- nand2=15ps
- nand3=20ps
- and2=22ps

Penn ESE534 Spring2010 - DeHon
33

Critical Path

- Path lengths in circuit may differ
- Worst-case performance of circuit determined by the longest path
- Longest path designated Critical Path

35

NP-hard in General

- Logic Optimization
- Two Level Minimization
- Covering w/ reconvergent fanout
- Are NP-hard in general
- ...but that's not to say it's not viable to find an optimal solution.
- Cover how to attack in an ESE535
- can point you at rich literature
- can find software to do it for you

Path Delay

- Simple Model: Delay along path is the sum of the delays of the gates in the path

Path Delay $=$ Delay $($ And3i2 $)+$ Delay $\left(\right.$ Or2 $\left.{ }_{34}\right)$
Penn ESE534 Spring2010 -- DeHon
34

Multiple Paths

Path Delay $=$ Delay $($ Or2i1 $)+$ Delay $($ And2 $)+$ Delay $($ Or2 $)$

Path Delay $=\operatorname{Delay}($ And3i2 $)+\operatorname{Delay}\left(\mathrm{Or}_{36}\right)$
Penn ESE534 Spring2010 -- DeHon

Critical Path = Longest

Path Delay $=3$

Path Delay $=2$

Delay also depend on Costs

- Consider again:
- I1: ((a*b) + (c*d)) ${ }^{*} e^{\star f}$
- I2: ((a*b*e*f)+(c*d*e*f))
- Delay:
- I1: D(and2)+D(or2)+D(and3)
- I2: D(and4)+D(or2)

Delay also depend on Costs

- Delay:
- I1: D(and2)+D(or2)+D(and3)
- I2: D(and4)+D(or2)
- $\mathrm{D}(\mathrm{and} 2)=22 \mathrm{ps}, \mathrm{D}(\mathrm{and} 3)=27 \mathrm{ps}, \mathrm{D}(\mathrm{and} 4)=33 \mathrm{ps}$ $D D(12)=(33+D($ or2 $))<D(11)=(22+27+D($ or2 $))$
- $\mathrm{D}(\mathrm{and} 2)=22 \mathrm{ps}, \mathrm{D}(\mathrm{and} 3)=27 \mathrm{ps}, \mathrm{D}(\mathrm{and} 4)=55 \mathrm{ps}$ $\square D(12)=(55+D(o r 2))>D(11)=(22+27+D(o r 2))$

Delay and Area Optimum Differ

- I1: ((a*b) + (c*d))**e*
- I2: ((a*b*e*f)+(c*d*e*f))
- $D($ and 2$)=22 p s, D($ and3 $)=27 p s, D($ and 4$)=33 p s$ $\square \mathrm{D}(\mathrm{I} 2)<\mathrm{D}(\mathrm{I} 1)$
- gate size proportional to number of inputs: $\square \mathrm{A}(11)<\mathrm{A}(12)$
- Induced Tradeoff -- cannot always simultaneously minimize area and delay cost

Penn ESE534 Spring2010 - DeHon

Delay in Gates make Sense?

- (continuing example)
- How big is it? (unit gate area) 2^{n}
- How long a side? $\operatorname{Sqrt}\left(2^{n}\right)=2^{(n / 2)}$
- Minimum wire length from input to output?
$-2^{*} 2^{(n / 2)}$
- Delay per unit length? (speed of light limit)
- Delay $\propto 2^{(n / 2)}$

Penn ESE534 Spring2010 - DeHon

Admin: Reminder

- Slides on web (morning before class)
- Post-class may updated if feedback/class indicates something unclear
- Reading: Monday's on Blackboard
- Assignment 1 Due Monday
- Beginning of class
- Note deferring A.3/C. 2 to HW2
- Feedback sheets
- Office hour preferences / constraints

Does delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n ? - (unit delay gates)
- How big is it? (unit gate area)
- How long a side?
- Minimum wire length from input to output?
Penn ESE534 Spring2010 -- DeHon

It's not all about costs...

- ...or maybe it is, just not always about a single, linear cost.
- Must manage complexity
- Cost of developing/verifying design
- Size of design can accomplish in fixed time - (limited brainpower)
- Today: human brainpower is most often the bottleneck resource limiting what we can build.
Penn ESE534 Spring2010 -- DeHon
46

Big Ideas [MSB-1 Ideas]

- Canonical representation for combinational logic
- Transformation
- don't have to implement the input literally
- only have to achieve same semantics
- trivial example: logic minimization
- Minimum depends on cost model
- Often tradeoff between costs (area-delay)
and a hath ara

$$
\mathrm{C} \text { and } \mathrm{D} \text { both are }
$$ inputs to E

Output of A is
51

Post Lecture

- Fanout: output of gate drives inputs of more than one gate
- Reconvergent Fanout: multiple of the gates consuming one gates output contribute toward an output

Post Lecture: NP-Hard

- NP-Hard
- http://www.claymath.org/millennium/ P_vs_NP/
- Essay targeted at non-expert: http:// vlsicad.eecs.umich.edu/BK/Slots/cache/ www.cs.chalmers.se/~een/PeqNP.ps

