
1

Penn ESE534 Spring2010 -- DeHon
1

ESE534:
Computer Organization

Day 6: February 3, 2010
Virtualization,

Programmable Architectures

Preclass Parity

•  How many gates?

•  Draw solutions

Penn ESE534 Spring2010 -- DeHon
2

Preclass xor2 in nor2s

•  Version shown on board not quite right.

•  xor2(a,b) = /xnor2(a,b) = /(/a*/b+a*b)

Penn ESE534 Spring2010 -- DeHon
3

Preclass xor3 in nor2s

•  Xor3(a,b,c)=xor2(xor2(a,b),c)

Penn ESE534 Spring2010 -- DeHon
4

Penn ESE534 Spring2010 -- DeHon
5

Last Time

•  Memory
•  Memories pack state compactly

– densely

Penn ESE534 Spring2010 -- DeHon
6

What is Importance of
Memory?

•  Radical Hypothesis:
– Memory is simply a very efficient

organization which allows us to store data
compactly
•  (at least, in the technologies we’ve seen to date)

– A great engineering trick to optimize
resources

•  Alternative:
– memory is a primary

Day 5

2

Penn ESE534 Spring2010 -- DeHon
7

Today

•  Virtualization
•  Programmable Gates

– Muxes, ALUs
•  Datapath Operation
•  Memory

– …continue unpacking the role of memory…

Penn ESE534 Spring2010 -- DeHon
8

Last Wednesday

•  Given a task: y=Ax2 +Bx +C
•  Saw how to share primitive operators
•  Got down to one of each

Penn ESE534 Spring2010 -- DeHon
9

Very naively

•  Might seem we need one of each
different type of operator

Penn ESE534 Spring2010 -- DeHon
10

..But

•  Doesn’t fool us
•  We already know that nand gate

 (and many other things—HW1.B)
…. are universal

•  So, we know, we can build a universal
compute operator

CBSSS 2004: DeHon

Temporal Composition

CBSSS 2004: DeHon

Temporal

•  Don’t have to implement all the gates
 at once

•  Can reuse one gate over time

3

CBSSS 2004: DeHon

Temporal Decomposition

•  Take Set of gates
•  Sort topologically

– All predecessors before successors
•  Give a unique number to each gate

– Hold value of its outputs
•  Use a memory to hold the gate values
•  Sequence through gates

CBSSS 2004: DeHon

Example Logic

CBSSS 2004: DeHon

Numbered Gates Preclass

•  Number gates

Penn ESE534 Spring2010 -- DeHon
16

CBSSS 2004: DeHon

nor2 Memory/Datapath

CBSSS 2004: DeHon

Programming?

•  How do we program this network?

4

CBSSS 2004: DeHon

Programming?

•  Program gates
– Tell each gate where to get its input

• Tell gate n where its two inputs come from
• Specify the memory location for the output

of the associated gate
– Each gate operation specified with

•  two addresses (the input sources for gate)
• This is the instruction for the gate

CBSSS 2004: DeHon

nor2 Memory/Datapath

Instruction

Supply Instruction

•  How can we supply the sequence of
instructions to program this operation?

Penn ESE534 Spring2010 -- DeHon
21

Penn ESE534 Spring2010 -- DeHon
22

Simplest Programmable
Control

•  Use a memory to “record”
control instructions

•  “Play” control with sequence

CBSSS 2004: DeHon

Temporal Gate Architecture How program preclass
computation?

Penn ESE534 Spring2010 -- DeHon
24

5

Simulate the Logic

•  For Preclass
•  Go around the room calling out:

–  Identify PC
–  Identify instruction

•  Perform nor2 on slot __ and slot ___

– Result is ___
– Store into slot ___

Penn ESE534 Spring2010 -- DeHon
25

Penn ESE534 Spring2010 -- DeHon
26

What does this mean?

•  With only one active component
–  nor gate

•  Can implement any function
– given appropriate

•  state (memory)
• muxes (interconnect)
• Control

Penn ESE534 Spring2010 -- DeHon
27

Defining Terms

•  Computes one
function (e.g. FP-
multiply, divider,
DCT)

•  Function defined at
fabrication time

•  Computes “any”
computable function
(e.g. Processor,
DSPs, FPGAs)

•  Function defined
after fabrication

Fixed Function: Programmable:

Penn ESE534 Spring2010 -- DeHon
28

Result

•  Can sequence together primitive
operations in time

•  Communicating state through memory
– Memory as interconnect

•  To perform “arbitrary” operations

Penn ESE534 Spring2010 -- DeHon
29

“Any” Computation?
(Universality)

•  Any computation which can “fit” on the
programmable substrate

•  Limitations: hold entire computation
and intermediate data

CBSSS 2004: DeHon

Temporal-Spatial Variation

•  Can have any number of gates
– Tradeoff Area for Reduce Time….

6

Use of Memory?

•  What did we use memory for here?
•  State
•  Instructions
•  Interconnect

Penn ESE534 Spring2010 -- DeHon
31

Programmable Functions

Penn ESE534 Spring2010 -- DeHon
32

CBSSS 2004: DeHon

Mux can be a programmable gate

•  bool mux4(bool a, b, c, d, s0, s1) {
return(mux2(mux2(a,b,s0),
 mux2(c,d,s0),
 s1));
 }

CBSSS 2004: DeHon

Mux as Logic
•  bool and2(bool x, y)
 {return (mux4(false,false,false,true,x,y));}
•  bool or2(bool x, y)
 {return (mux4(false,true,true,true,x,y));}
•  Just by routing “data” into this mux4,

– Can select any two input function

CBSSS 2004: DeHon

Programmable Variation
•  Can use programmable gate in place of

nor gate

Specifying the function of the gate
 becomes part of the instruction.

Penn ESE534 Spring2010 -- DeHon
36

Is an Adder Universal?
•  Assuming interconnect:

–  (big assumption as we’ll see later)
– Consider:

•  What’s c?

A: 001a
B: 000b
S: 00cd

7

Penn ESE534 Spring2010 -- DeHon
37

Practically

•  To reduce (some) interconnect,
 and to reduce number of operations,
 do tend to build a bit more general

“universal” computing function

Penn ESE534 Spring2010 -- DeHon
38

Arithmetic Logic Unit (ALU)

•  Observe:
– with small tweaks can get many functions

with basic adder components

Penn ESE534 Spring2010 -- DeHon
39

Arithmetic and Logic Unit

Penn ESE534 Spring2010 -- DeHon
40

ALU Functions
•  A+B w/ Carry
•  B-A
•  A xor B (squash

carry)
•  A*B (squash carry)
•  /A

Penn ESE534 Spring2010 -- DeHon
41

Slightly more conventional
Programmable Architecture

Penn ESE534 Spring2010 -- DeHon
42

“Stored Program” Computer/
Processor

•  Can build a datapath that can be
programmed to perform any computation.

•  Can be built with limited hardware that is
reused in time.

•  Historically: this was a key contribution
from Penn’s Moore School
– Computer Engineers: Eckert and Mauchly
– ENIACEDVAC
–  (often credited to Von Neumann)

8

Penn ESE534 Spring2010 -- DeHon
43

Instructions

•  Identify the bits which control the
function of our programmable device as:
– Instructions

Penn ESE534 Spring2010 -- DeHon
44

Programming an Operation

•  Consider:
 C = (A+2B) & 00001111

•  Cannot do this all at once
•  But can do it in pieces…like nor2 case

Penn ESE534 Spring2010 -- DeHon
45

ALU Encoding

•  Each operation has some bit sequence
•  ADD 0000
•  SUB 0010
•  INV 0001
•  SLL 1110
•  SLR 1100
•  AND 1000

Penn ESE534 Spring2010 -- DeHon
46

Programming an Operation

•  Decompose into pieces
•  Compute 2B 0000 1 001 001 010
•  Add A and 2B 0000 1 000 010 011
•  AND sum with mask 1000 1 011 100 111

Op w src1 src2 dst
C = (A+2B) & 00001111

Penn ESE534 Spring2010 -- DeHon
47

Fill Instruction Memory

•  000: 0000 1 001 001 010
•  001: 0000 1 000 010 011
•  010: 1000 1 011 100 111

Op w src1 src2 dst

Program operation
by filling memory.

Penn ESE534 Spring2010 -- DeHon
48

What have we done?

•  Taken a computation: y=Ax2 +Bx +C
•  Turned it into operators and

interconnect

•  Decomposed operators into a basic
primitive:
•  nor, 2-input mux gates, adds, ALU

9

Penn ESE534 Spring2010 -- DeHon
49

What have we done?
•  Said we can implement it on as few as

one of compute unit {ALU, mux, nor}

•  Added an instruction to tell single,
universal unit how to act as each
operator in original graph

•  Added a unit for state

Penn ESE534 Spring2010 -- DeHon
50

Virtualization
•  We’ve virtualized the computation
•  No longer need one physical compute

unit for each operator in original
computation

•  Can suffice with:
1.  shared operator(s)
2.  a description of how each operator

behaved
3.  a place to store the intermediate data

between operators

Penn ESE534 Spring2010 -- DeHon
51

Virtualization

Penn ESE534 Spring2010 -- DeHon
52

Why Interesting?
•  Memory compactness
•  This works and was interesting because

–  the area to describe a computation, its
interconnect, and its state

–  is much smaller than the physical area to
spatially implement the computation

•  e.g. traded multiplier for
–  few memory slots to hold state
–  few memory slots to describe operation
–  time on a shared unit (ALU)

Penn ESE534 Spring2010 -- DeHon
53

Questions?

Penn ESE534 Spring2010 -- DeHon
54

Admin Comments

•  Day5 posted slides – section at end
connecting preclass equations to
memory model

•  Office Hours Wednesday (today 2pm)
– Comes

•  after homework goes out (Monday)
•  after lecture on material (Wednesday)
•  before homework is due (next Monday)

10

Penn ESE534 Spring2010 -- DeHon
55

Big Ideas
[MSB Ideas]

•  Memory: efficient way to hold state
– …and allows us to describe/implement

computations of unbounded size
•  State can be << computation [area]
•  Resource sharing: key trick to reduce

area
•  Memory key tool for Area-Time tradeoffs
•  “configuration” signals allow us to

generalize the utility of a computational
operator

Penn ESE534 Spring2010 -- DeHon
56

Big Ideas
[MSB-1 Ideas]

•  ALUs and Muxes as universal compute
elements

•  First programmable computing unit
•  Two key functions of memory

–  retiming (interconnect in time)
–  instructions

•  description of computation

