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ESE534, Spring 2012 Final Exercise April 2, 2012

FM1 Due: Monday, April 9, 12:00pm
FM2 Due: Monday, April 16, 12:00pm
Final Due: Tuesday, May 8, 5:00pm

Late Policy: The final exercise is due May 8th. The standard late policy for homeworks
does not apply. If you turn it in later than 5:00pm on May 8th, we reserve the right to give
you no credit. This is designed as a one month project. The milestone due dates (FM1,
FM2) are designed to encourage you to to get started on this now and properly pace your
progress. The May 8th due date gives you flexibility—it is not a signal that you should start
this assignment later than assignments that have earlier due dates. You can always plan to
finish this one earlier to be compatible with your other deadlines. Normal late policy applies
to FM1 and FM2.

Overall goal: Design an energy-efficient programmable architecture for lossless data com-
pression and evaluate on a simple Lemple-Ziv (LZ) [4] compression algorithm.

1 Setup

We identified compression as a way to reduce the amount of data that needs to be sent
across an energy expensive interface (e.g. an off-chip data bus, long wires crossing from one
side of the chip to another, over a wired or wireless network link). Consequently, energy
efficient compression might be an important building block to have on a future computing
component. Nonetheless, exactly which kind of compression and how to tune it might be
very application and data dependent (e.g. [1]). This suggests a need for a programmable
architecture that can be used to implement compression.

We can imagine that tomorrow’s highly programmable chips contain a heterogeneous com-
puting fabric built from a mix of various kinds of programmable computing arrays (e.g.
processor cores, FPGA blocks, GPUs). As such, it might be viable to customize portions of
the array for the compression engine. It would, however, also be good if the resources for
the compression function were usable for other tasks when they weren’t needed for compres-
sion. To motivate the inclusion of some programmable architectural components tuned for
compression, we should demonstrate that they have significant energy savings over simply
using processor cores or FPGA arrays.
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2 Problem Specification

• FM1 (Final Milestone 1):

1. Design and estimate the energy required for a µcoded implementation for the tree-
based (Section 5.1) LZ encoding on a processor-like architecture (See Section 6.1).
You may add instructions and tweak the implementation to customize for the
compression problem.

(a) Draw your resulting architecture.

(b) Develop an energy model for your architecture. In addition to other param-
eters, this should be parametrized by the window size, D.

(c) Describe the specific algorithm you are implementing.

(d) Provide the instructions required to implement the tree-based LZ on your
processor architecture.

(e) Based on your model and the technology constants provided, estimate the
energy required per byte encoded when D = 1024.

2. Assuming you use this basic processor-style architecture, how could you optimize
it to reduce energy on this problem? We suggest you provide at least three
ideas. More are welcomed. It will probably be useful to analyze where energy
is going in your design and think about how the major sources of energy might
be reduced. Describe each idea in a few sentences, using simple equations for
trends as appropriate. The point of this is to get you started thinking about
opportunities for optimization.

• FM2 (Final Milestone 2):

1. Design and estimate the energy required for an FPGA implementation of the
systolic-style (Section 5.2) LZ encoding. Use an architecture similar to the FPGA
on HW9 with memory banks (See Section 6.2).

(a) Draw your resulting architecture.

(b) Develop an energy model for your architecture.

(c) Describe your LZ design and show how it is mapped on top of your architec-
ture.

(d) Based on your model and the technology constants provided, estimate the
energy required per byte encoded for a window size D = 1024.

2. Assuming you use this basic FPGA-style architecture, how could you optimize it
to reduce energy on this problem? We suggest you provide at least three ideas.
More are welcomed. As with FM1, provide a few sentences and trend equations
as appropriate for each idea.

3. Now that you have explored how conventional designs support this computation,
identify ideas for an architecture to minimize energy and the parameters you may
need to explore to find the most efficient architecture.
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(a) What optimization techniques might be relevant and worth exploring? We
recommend you try to come up with a large list, then try to prioritize them
by likely impact.

(b) What architectural features do these techniques suggest?

(c) Describe the parameters you may need to explore to optimize your design.

This problem is specifically intended to get you started developing ideas for the
architecture you will design for the final. It also provides an opportunity for the
instructor to give you feedback on your preliminary ideas.

• Final:

1. Describe the parametrized architecture you have chosen.

2. Develop an energy model for your parametrized architecture.

3. Identify the parameter settings that minimize energy and report the associated
energy to encode each byte.

4. Compare this result to the processor- and FPGA-based designs you developed for
FM1 and FM2.

5. Writeup your results as described in Section 3.
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3 Final Report Format

Please provide your solution in the form of a memo to an engineering group manager.

• Summary [No longer than 4 pages] including:

– One paragraph overall recommendation.

– Diagram for each of the three architectures.

– Table describing the parameters used in your architecture and identifying the
parameter value you selected. This should include references to graphs in the
appendix that support the selection of the specific parameters.

– Table comparing the energy of the three architectures for three different window
sizes (D = 512, D = 1024, D = 2048 )

– Prose description detailing why and how your architecture is able to save energy.

• Consultant log [1 page] summarizing all interactions with other students and advisers.
(Date/time, length of session, participants, topics discussed)

• Please include a statement on your final submission:

I, your-name-here, certify that I have complied with the
University of Pennsylvania’s Code of Academic Integrity
in completing this final exercise.

You can review the Code of Academic Integrity here: http://www.upenn.edu/academicintegrity/
ai_codeofacademicintegrity.html

• Appendix [as long as necessary] showing the derivation and composition of each model
and selection of parameters. This should include everything requested for the Final.
It may include FM1 and FM2 details. It may include refined designs from FM1 and
FM2 if instructor feedback or your own insight leads you to refine the designs.
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4 Collaboration

Informally: you may discuss strategy and architectural parametrization in groups through
the last day of classes (April 24th). All detailed analysis and writeup, for both milestones
and final, must be done individually, and no collaboration is allowed after April 24th.

More precisely:

• Each person must individually prepare his or her own solution memos and milestone
assignments.

• After April 24th, you should not discuss the project and solutions with anyone. (You
may ask clarifying question of the instructor after April 23rd — nonetheless, the in-
structor will be traveling starting April 23rd, and will be slow with answers. He will
be more generous with answers and discussion before April 23rd than after.)

• Before April 24th, you may discuss:

– base µcoded and FPGA architectures

– general design strategies for mapping onto µcoded and FPGA architectures

– techniques and architecture for minimizing energy

– diagrams and equations on a white-board, napkin, and/or pencil and paper

• Your writeup must document your discussion groups and sessions.

• You may not:

– develop final analysis equations with others

– share analysis code

– share final diagrams

– have a joint coding or drawing session for analysis and diagrams

– show others your computer-drawn diagrams or computer-rendered analysis
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5 Lempel-Ziv Compression Algorithms

It’s possible there are bugs in the fine details here. I will continue to review. Let me know
if you find clear errors.

The basic idea in a Lempel-Ziv compression is to use a window into the data already trans-
mitted and code substrings relative to that data. A key parameter in the algorithm is the
size of the window.

A rough version follows:

While there is still data to send:

• Find the longest match between the data in the window and the data you need to send
next.

• Send a description of that match (e.g. the address of the match and the associated
length)

• Update the window to include the data you just sent.

Two variants worth considering are the tree-based version [2, 5] and the systolic version
[3, 4].1 Both of these papers talk about using CAM, but they use it in different ways. These
two variations store data slightly differently.

5.1 Tree Version

The tree version [5] effectively stores a tree of string prefixes. It always keeps around a tree
for each possible starting character in order to initialize the process and make sure we can
always encode every string.

1. Start with the first character to send
2. current-tree-node = tree in window that matches this first character
3. while (next input character is a child of current-tree-node)

(a) current-tree-node=associated child node
(b) get next input

4. // when it exits the loop, the current-tree-node does not have a child matching the next
input character

5. send id associated with current-tree-node // this encodes the entire substring down to
the point of mismatch

6. add a child of current-tree-node for next input character // this extends the tree by
one; so if this longer substring is encountered again, it can be sent.

7. make next input the first character and go to step 2 // this makes the next input the
beginning of the next sequence we will encode.

We also have to deal with the window filling up. [2] shows example trees and describes
solutions for dealing with finite window memory.

1We’re not worried about dealing with errors for this assignment, so you can ignore that part of [3].
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5.2 Systolic Version

The systolic version [4] simple keeps a window of the last D characters sent. For simplicity,
imagine a chain of PEs each holding a character.

PE

reg

PE

reg

PE

reg

PE

reg

PE

reg

PE

reg

PE

reg

PE

reg

match

older characters

shift in
new characers
here

newer characters

broadcast next character to match

1. Start with the first character to send
2. Broadcast the character to all PEs with an indication this is a new match // all PEs

participate when it is a new match
3. Each PE: if the character matches, send a match signal out to the PE to its right

neighbor (the PE that represents the next most recent character)
4. L = 0 // length of match
5. While at least one of the PEs is indicating a match

(a) broadcast the next character to all PEs indicating this is a match extension
(b) Each PE: if the PE received a match indication from its left (previous) neighbor

PE and the character matches, send a match signal out to the PE to its right.
(c) L = L+ 1

6. // when it exits the loop, there is no match up to the final character
7. Send the address of the first PE that received a match from its left but was not able

to match the current broadcast character along with the length of the match, L.
8. Shift the set of characters just matched into the array of PEs (left shift).
9. Broadcast a signal telling all PEs to now treat the last (unmatched) input as a new

match and go to step 3.

In this case, we must also add provision for their being no match in the window. In these
cases, we will send the character unencoded. This means we will have to have a way to
distinguish when we are sending a position into the array and when we are sending a literal.
The simplest version is to reserve one bit for this. [3] gives examples of this scheme and
describes two ways of implementing this, one using a particular kind of CAM. While it calls
one systolic and the other CAM-based, the are similar in that they keep this sequential
window of previous characters.

We’ve deliberately tried to describe relatively simple versions of these algorithms here. You
will find many variations in the literature. You are welcome to tweak the algorithm or use a
variant of a more sophisticated version from the literature. If you make large changes, you
may need to simulate it to validate that it has comparable compression capabilities. In any
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case, you will need to describe the algorithm(s) you use, the associated parameters, and your
selection of the parameters.

Wikipedia:

• http://en.wikipedia.org/wiki/LZ77_and_LZ78

• http://en.wikipedia.org/wiki/Lempel-Ziv-Welch

8



ESE534 Spring 2012

6 Architectures

6.1 Processor Architecture with Memory

The processor architecture is an extension of the one used in HW4.
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Here we add a main data memory as a single, monolithic bank to hold the window of data
for encoding (e.g. the encoding trees). This is a load-store architecture. You can either
transfer a value from the memory on a cycle or use the ALU to perform arithmetic. You
will need to add suitable instructions to access the memory.

Model the memory banks (including instruction memory and register file memory banks)
according to the model you developed from HW7 (See Section 7).

6.2 FPGA Architecture with Memory Banks

Use the clustered 4-LUT architecture from HW9 (k = 4, n = 10, 22 inputs to the CLB).
Assume full crossbar connectivity between the 22 inputs + 10 outputs and the 4× 10 inputs
to the 4-LUTs (so a 32×40 crossbar).

For simplicity, assume you can replace any of the CLB clusters with a memory bank that
requires fewer inputs than the 22 inputs to a CLB and fewer outputs than the 10 outputs
from a CLB. This way, the I/O for the memory bank remains the same as the CLB so it
integrates into the same mesh network. For the preliminary (FM2) version, the maximum
memory capacity is 2048 bits. You may also select the fraction of CLB clusters you replace
with memory banks. The input bits will need to be able to specify R/W control (1 bit),
Address, and Data.

We select 2048 bits above as (crudely) being comparable in size to the LUT cluster. For the
final, you are defining your own architecture and may rethink all of these sizes as long as
you model them.
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7 Technology Model

Vdd=0.75V.

LUT: Model the 4-LUT as an 16:1 mux followed by a register and 2-input mux to select
between the registered and unregistered output.

Register: Creg = 4×10−16F. This is the total effective capacitance for the register, including
input, internal, output, and clock load.

Interconnect: Model interconnect according to HW9.

Crossbar/Mux: We will model crossbars and muxes equivalently based on their inputs,
outputs. That is, an N -input, M -output crossbar is M N :1 muxes.

• The capacitive load on each data input is 2 × 10−16F.
• The capacitive load on the output of the mux is 2 × 10−16F.
• The capacitive load on each control input is N × 10−16F.
• The capacitive load switched internal to the mux is 2 × 10−15F.

Memory: Model memory banks according to HW7 (corrected as necessary based on feed-
back). Use ITRS 2015 (21nm half pitch) LOP process node for Cg,total and other parameters
as necessary. If you use multiported memories, extend your model to deal with the addi-
tional word and bit-lines. Multiplying the memory energy by the number of ports, p, is an
acceptable level of modeling.

Wire: For the most part, let’s make the simplifying assumption that wire capacitance does
not dominate other capacitances. However, if you do have long wires in your architecture—
either because you must wire across large PEs or because you have wires that span multiple
PE widths, model them similar to HW9 with Cmetal = 3.0× 10−15F per 30,000nm.2 To keep
the scope of this down, we’re not generally asking you to calculate areas. In practice areas
determine these wirelengths and could be a non-trivial component of capacitance. If you
find yourself building large structures (memory banks significantly larger than the 2048b
memory mentioned for the FPGA), it may be necessary to make some estimates.

Memory: If you do need to make crude estimates of the sizes of large memories, use the
HW7 area model:

(Amem(d-entry, w-bit wide) = Abit (d(2 log2(d) + w) + 10w) (1)

For a p ported memory cell, use the Day 20 model:

Abit(p) =
(
250F2 + p× 125F2

)
(2)

If you need additional information about the technology:

• Estimate from ITRS 21nm LOP.
• Propose a suitable model and run it by the instructor.
• As a last result, ask for the instructor suggestions for where to get started on a model

before April 23rd.

In any case, document your assumptions, values, and models in your writeups.

2My ballpark estimate for the side length of the k = 4, n = 10 CLB cluster in the 21nm process.
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