
ESE534 Spring 2012

University of Pennsylvania
Department of Electrical and System Engineering

Computer Organization

ESE534, Spring 2012 Assignment 2: Space-Time Multiply Monday, Jan. 23

Due: Monday, January 30, 12:00pm

We saw in lecture how to build various adders. In this problem, We’re asking you to review
or develop various techniques for building multipliers.

• Give latency and area in terms of the operand bitwidth, w. (we’ll take asymptotic anal-
ysis, or you can use symbolic constants in terms of primitive gates such as Tfulladderslice,
Tand2, Aand2, Aregisterbit, Amux2)

• When asked to draw an implementation, show the w = 4 case (except for 3(e) where
we ask you to show w = 8). You may use hierarchical schematics.

1. Consider a spatial multiplier built out of simple, ripple-carry adders.

(a) Show a 4×4 multiplier.
(b) What is the area and latency for this multiplier? (function of w)

2. Let’s consider an alternate technique that uses the same full adder bitslice as in the
previous ripple-carry adder design, but which wires up the carries differently. [This
technique is known as delayed addition.]

FAFA FAFA

A[3] B[3] C[3] A[2] B[2] C[2] A[1] B[1] C[1] A[0] B[0] C[0]

S0[0]S1[1] S0[1]S0[2]S1[2]S0[3]S1[3]S0[4]

Here, A and B will be your normal two inputs to the adder. S0 and S1 together store
the sum.

(a) What is the latency of a single w-bit delayed addition?
(b) How can the C input to the delayed adder be used?
(c) Use these delayed-addition adders to build a spatial multipler. The two input-

operands to the multiplier are in standard form. Output values are represented
as two numbers (i.e. S0, S1 form shown above). Show the resulting, spatial
multiplier which starts with numbers in standard form, but uses these delayed
adders internally. (show w = 4 case.)

1



ESE534 Spring 2012

(d) What do you need to do to the multiplier output to convert the result back into
normal form?

• Remember, S0 and S1 jointly encode the final result. The normal form output
should be a single binary-encoded word.
• We would like this final conversion to have minimum latency. Be specific

about how we implement the operation to minimize the latency it contributes.

(e) What is the final area and latency of this multiplier? (function of w)

3. Continuing to the use full-adder bitslice used above, wire them up as an associative
reduce tree to compute the result of the multiplication from all the bit-wise partial-
products (ai ∧ bj).

(a) How many partial-product bits do you start with? (function of w)
(b) How many bits are outputs from the first stage of full-adder bitslices?
(c) What reduction do you get with a single stage of full adders? (e.g. from part (a)

to (b))
(d) Continuing to use stages of full-adder bitslices to reduce the number of bits, how

deep is the full reduce tree? (function of w)
(e) Show the resulting multipler. (w = 8 case)
(f) What is the final area and latency of this multiplier? (function of w)

4. Using a datapath with only w full-adder bitslices, w and’s, multiplexers, and registers,
develop an FSMD to compute the product of two w-bit numbers in the least amount of
total time. You may want to continue to use the basic delayed addition multiplication
strategy from 3.

(a) Identify the state registers you will need (what do they hold? how big will they
be as a function of w?).

(b) Show the resulting multipler:

• datapath (show w = 4 case)

• how the datapath and FSM interact (control signals between them)

• state machine diagram for the FSM

(c) What is the latency of each cycle? (this probably demands you think about the
gate-level implementation of the FSM and the datapath; can you guarantee this
is not a function of w for any w? (assuming delay is in the gates not the wires))

(d) How many cycles does it take to complete the multiply? (function of w)
(e) What is the final area and latency of this multiplier? (function of w)

5. Fillin the following table from your area/latency answers to the problems above (all
functions of w):

Design Area Latency

P1: Ripple-Carry Based
P2: Delayed-Addition Based

P3: Associative Reduce Delayed-Addition
P4: Delayed-Addition FSMD

2


