University of Pennsylvania Department of Electrical and System Engineering Computer Organization

ESE534, Spring 2012	Assignment 8: Rent's Rule	Monday, Mar. 19
---------------------	---------------------------	-----------------

Due: Monday, March 26, 12:00PM

- 1. For HW6.2 (LUT Design):
 - (a) Decompose your design recursively into subtrees (like problem 1 on preclass Day 16). Show mapping of individual LUTs to tree leaves and the number of signals on each channel edge in the tree. Leaf of the tree is the 5-LUT (including the cascade input); that is, treat the cascade input like any other input for this problem. Since you are not using the flip-flop, the output of the LUT and the cascade output are the same signal, so treat them as such.
 - (b) Compute maximum IO's at each tree level.
 - (c) Estimate Rent parameters (c, p) from your answer to part (b).
 - (d) Show layout of the design on a c = 6, p = 0.5 tree. This may require re-association and LUT depopulation to fit on the wire schedule of the tree. Circuit IO's should come through the root of the tree.
- 2. Estimate wire minimizing cuts and record the IO vs. capacity ratios for the following. Estimate the associated Rent parameters (c and p).
 - (a) Unbanked memory (HW7.1) $N = d = w = 2^{10}$
 - (b) Banked memory (HW7.2) $N = 2^{10}$, $d = 2^5$, $b = 2^5$, $w = 2^5$ then 2^5 of these in parallel to make up $w_{total} = 2^{10}$ (so total capacity and width ends up being the same as (a) but internal organization is different).
 - (c) 64×64 simple array multiplier (HW2.1)
 - (d) 64×64 associative reduce multiplier (HW2.3)

- 3. What does Rent's Rule tell us (not tell us) about the dynamic switching energy requirements for a computation? Assume:
 - E = ∑_{all nets i} (¹/₂a_iC_iV²)
 Voltage is fixed.

 - activity factor, a_i varies per net.
 - net capacitance, C_i , will include capacitance from all the wires on the net.
 - C_{wire} is proportional to its length.
 - (a) Given the N, c, p for a design, give bounds on the energy requirement. [State assumptions as necessary. You will likely need to make several.
 - (b) The bisections for Rent calculation do not take into account the activity factor, a.
 - i. Describe how this effects the accuracy of a Rent-only estimate of energy?
 - ii. Describe how you might define and obtain a better estimate of interconnect energy that follows the spirit of the Rent estimate, but takes into account knowledge of activity factors. [open ended question]
- 4. What is the energy impact of mismatched wire schedules for spatially configured computations (e.q. FPGAs – instructions do not change from cycle-to-cycle) using the homogeneous Tree-of-Meshes design from Day 16. Make the simplifying assumption of uniform activity factors on *used* nets for this question; assume unused wires do not switch. Assume wire dominated and think about wire lengths.
 - (a) What is the energy efficiency of a mismatch mapping where c_{design} , p_{design} is larger than c_{net} , p_{net} ? (You may assume the simple case where you use a suitable powerof-2 larger tree and you "pull the design up" to the tree to meet the required wire schedule.)
 - (b) What is the energy efficiency of a mismatch mapping where c_{design} , p_{design} is smaller than c_{net} , p_{net} ?