ESE534: Computer Organization
 Day 12: February 27, 2012
 Compute 1: LUTs
 器Penn

Today

- Look at Programmable Compute Blocks
- Specifically LUTs
- Introduce recurring theme (methodology):
- define parameterized space
- identify costs and benefits
- look at typical application requirements
- compose results, try to find best point

Penn ESE534 Spring2012 - DeHon

Compute Function

- What do we use for "compute" function?

We could...

- Just build a large memory = large LUT
- Put our function in there
- What's wrong with that?

How big is a k-LUT?

- k-input, 1-output?
- k-input, m-output?

Start to Sort Out:

Big vs. Small Luts

- Establish equivalence
- how many small LUTs equal one big LUT?
- ...small LUTs or large LUTs
- Continuum question: how big should our memory blocks used to perform computation be?

What's best to use?

- Small LUTs
- Large Memories

How much logic in a LUT?

- Upper Upper Bound?:
- M-LUT implemented w/ 4-LUTs
-M -LUT $\leq 2^{\mathrm{M}-4}+\left(2^{\mathrm{M}-4}-1\right) \leq 2^{\mathrm{M}-3} 4$-LUTs

How Much Logic in a LUT?

- Lower Bound?
- Concrete: 4-LUTs to implement M-LUT?
- Not use all inputs?
- 0 ... maybe 1
- Use all inputs?
- (M-1)/3
(M-1)/(k-1) for K-lut

How Much?

- Lower Upper Bound:
$-2^{2 \mathrm{M}}$ functions realizable by M-LUT
- Say Need n 4-LUTs to cover; compute n :
- strategy count functions realizable by each
- $\left(2^{2^{4}}\right)^{n} \geq 2^{2^{M}}$
- $n \log \left(2^{2^{4}}\right) \geq \log \left(2^{2^{M}}\right)$
- $n 2^{4} \log (2) \geq 2^{\mathrm{M}} \log (2)$
- $n 2^{4} \geq 2^{M}$
- $n \geq 2^{M-4}$

16

Memories and 4-LUTs

- For the most complex functions
- an M-LUT has $\sim 2^{\text {M-4 }} 4$-LUTs
\diamond SRAM 32Kx8 $\lambda=0.6 \mu \mathrm{~m}$
$-170 M \lambda^{2}$ (21ns latency)
$-8^{*} 2^{11}=16 \mathrm{~K} 4-$ LUTs
\diamond XC3042 $\lambda=0.6 \mu \mathrm{~m}$
$-180 \mathrm{M} \lambda^{2}$ (13ns delay per CLB)
- 288 4-LUTs
- Memory is $50+x$ denser than FPGA

Penn EsE534 Spming20. and faster
18

Memory and 4-LUTs

- For "regular" functions?
\diamond 15-bit parity
- entire 32Kx8 SRAM
- How many 4-LUTs?
- 5 4-LUTs
- (2% of XC3042 ~ 3.2M $\lambda^{2} \sim 1 / 50$ th Memory $)$

Memory and 4-LUTs

- Same 32Kx8 SRAM
$\diamond 7$ b Add
- entire 32Kx8 SRAM (largest will support)
- 14 4-LUTs
- (5\% of XC3042, 8.8M $\lambda^{2} \sim 1 / 20$ th Memory $)$

LUT + Interconnect

- Interconnect allows us to exploit structure in computation
- Even if Interconnect was 99\% of the area (100× logic area)
- Would still be worth paying!
- Add: $\mathrm{N} \times 2^{(2 \mathrm{~N})} \gg 2 \mathrm{~N} \times\left(2^{3} \times 128\right)$

$-N=16: 16 \times 2^{32} \gg 2 \times 16 \times 2^{10}=2^{15}$
- $\quad \rightarrow$ factor of $2^{21}=2$ Million
- Structure exploitation to avoid exponential costs is worth it!
enn ESE534 Spring2012 - DeHon

Preclass: 16-bit Adder from Memory and 3-LUTs

- How many inputs? outputs?
- Area for single large LUT?
- How many 3-LUTs?
- Area per 3-LUT?
- LUT area to implement adder with 3-

LUTs?

- Not include interconnect
- Ratio?

Penn ESE534 Spring2012 - DeHon

LUT + Interconnect

- Interconnect allows us to exploit structure in computation
- Consider addition:
- N-input add takes
- 2N 3-LUTs
- one N -output (2 N)-LUT

$-\mathrm{N} \times 2^{(2 \mathrm{~N})} \gg 2 \mathrm{~N} \times 2^{3}$
$-\mathrm{N}=16: 16 \times 2^{32} \gg 2 \times 16 \times 2^{3}$
$-2^{36} \gg 2^{8} \rightarrow$ factor of $2^{28}=256$ Million

Different Instance of a Familiar Concept

- The most general functions are huge
- Applications exhibit structure
- Typical functions not so complex
- Exploit structure to optimize "common" case

LUT Count vs. base LUT size

[Rose et al., JSSC 25(5):1217—1225, 1990] K 25

LUT Count vs. base LUT size

Standard Systematization

1. Define a design/optimization space

- pick key parameters
- e.g. $\mathrm{K}=$ number of LUT inputs

2. Build a cost model
3. Map designs
4. Look at resource costs at each point
5. Compose:

- Logical Resources \oplus Resource Cost

6. Look for best design points
-n ESEE534 Sping2012 - DeHton

Mapped LUT Area

- Compose Mapped LUTs and Area Model

Mapped Area vs. LUT K

$N . B$. unusual case minimum area at $\mathrm{K}=3$
Penn ESE534 Spring2012 -- DeHon
36

Implications (Deep)

In the range the minimizes area:

- LUT area negligible compared to interconnect
- Anything less flexible than LUT will require more interconnect

- $\mathrm{Y}=\log _{\mathrm{k}}(2)$
- (M-k) $\log _{k}(2)$
- $\mathrm{k}^{\mathrm{r}}=2$
- $(\mathrm{M}-\mathrm{k}) / \log _{2}(\mathrm{k})$
- $\mathrm{Ylog} \mathrm{g}_{2}(\mathrm{k})=1$
- $Y=1 / \log _{2}(k)$
- $\log _{k}(2)=1 / \log _{2}(k)$

Some Math

Delay
- Simple: $\log \mathrm{M}$
- Complex: linear in M
- Both scale with k as $1 / \log (\mathrm{k})$

Circuit Depth vs. K

Delay vs. K

Delay vs. K (proper critical path interconnect)

$\rightarrow 180 \mathrm{~nm}$ cmos $=-130 \mathrm{~nm}$ cmos $\approx 90 \mathrm{~nm}$ cmos $\approx 65 \mathrm{~nm}$ CMOs $-m 45 \mathrm{~nm}$ cmos
Penn ESE534 Spring2012 - DeHon
[Luu et al., FPGA 2009]

- empirically linear routing area
- Minimum area around $K=4$

59

Observation

- General interconnect is expensive
- "Larger" logic blocks
\Rightarrow fewer interconnect crossings
\Rightarrow reduces interconnect delay
\Rightarrow get larger
\Rightarrow less area efficient
- don't match structure in computation
\Rightarrow get slower
- Happens faster than modeled here due to area

Penn ESE534 Spring2012 -- DeHon 56
56

Big Ideas
 [MSB Ideas]

- Memory most dense programmable structure for the most complex functions
- Memory inefficient (scales poorly) for structured compute tasks
- Most tasks have structure
- Programmable interconnect allows us to exploit that structure

Big Ideas
 [MSB-1 Ideas]

- Delay
- LUT depth decreases with K
- in practice closer to $\log (\mathrm{K})$
- Delay increases with K
- small K linear + large fixed term

