
1

Penn ESE534 Spring2012 -- DeHon
1

ESE534:
Computer Organization

Day 4: January 25, 2012
Sequential Logic

(FSMs, Pipelining, FSMD)

Penn ESE534 Spring2012 -- DeHon
2

Previously

•  Boolean Logic
•  Gates
•  Arithmetic
•  Complexity of computations

– E.g. area and delay for addition

Penn ESE534 Spring2012 -- DeHon
3

Today

•  Sequential Logic
– Add registers, state
– Finite-State Machines (FSM)
– Register Transfer Level (RTL) logic
– Datapath Reuse
– Pipelining
– Latency and Throughput
– Finite-State Machines with Datapaths (FSMD)

Preclass

•  Can we solve the problem entirely using
Boolean logic functions?

Penn ESE534 Spring2012 -- DeHon
4

Penn ESE534 Spring2012 -- DeHon
5

Latches, Registers

•  New element is a state element.
•  Canonical instance is a register:

–  remembers the last value it was given until
told to change

–  typically signaled by clock

D Q

>

Why Registers?

•  Why do we need registers?

Penn ESE534 Spring2012 -- DeHon
6

2

Penn ESE534 Spring2012 -- DeHon
7

Reuse
•  In general, we want to reuse our

components in time

– not disposable logic

•  How do we
guarantee disciplined reuse?

To Reuse Logic…

•  Make sure all logic completed evaluation
– Outputs of gates are valid

•  Meaningful to look at them
– Gates are “finished” with work and ready to be

used again
•  Make sure consumers get value

– Before being overwritten by new calculation
(new inputs)

Penn ESE534 Spring2012 -- DeHon
8

Synchronous Logic Model
•  Data starts

–  Inputs to circuit
– Registers

•  Perform combinational
 (boolean) logic

•  Outputs of logic
– Exit circuit
– Clocked into registers

•  Given long enough clock
–  Think about registers getting values updated by

logic on each clock cycle
Penn ESE534 Spring2012 -- DeHon

9
Penn ESE534 Spring2012 -- DeHon

10

Issues of Timing...
•  …many issues in detailed implementation

– glitches and hazards in logic
–  timing discipline in clocking
– …

•  We’re going to (mostly) work above that
level this term.
– Will talk about the delay of logic between

registers
•  Watch for these details in ESE370/570

Preclass

•  How do we build an adder for arbitrary
input width?

Penn ESE534 Spring2012 -- DeHon
11

Preclass

•  What did the addition of state register(s)
do for us?

Penn ESE534 Spring2012 -- DeHon
12

3

Penn ESE534 Spring2012 -- DeHon
13

Added Power

•  Process unbounded input with finite logic
– Ratio input:gates arbitrarily large

•  State is a finite (bounded) representation
of what’s happened before
–  finite amount of stuff can remember to

synopsize the past
•  State allows behavior to depend on past

(on context)
Penn ESE534 Spring2012 -- DeHon

14

Finite-State Machine (FSM)
(Finite Automata)

•  Logic core
•  Plus registers to hold state

Penn ESE534 Spring2012 -- DeHon
15

FSM Model
•  FSM – a model of computations
•  More powerful than Boolean logic

functions
•  Both

– Theoretically
– practically

FSM Abstraction

•  Implementation vs. Abstraction
– Nice to separate out

•  The abstract function want to achieve
•  The concrete implementation

– Saw with Boolean logic
•  There are many ways to implement function
•  Want to select the concrete one that minimizes costs

•  FSMs also separate out
“desired function” from “implementation”

Penn ESE534 Spring2012 -- DeHon
16

Penn ESE534 Spring2012 -- DeHon
17

Formal FSM Specification
(Abstract from implementation)

•  An FSM is a sextuple M={K,Σ,δ,s,F,Σo}
– K is finite set of states
–  Σ is a finite alphabet for inputs
– s∈K is the start state
– F⊆K is the set of final states
‒ Σo is a finite set of output symbols
‒  δ is a transition function from K×Σ to K×Σo

Penn ESE534 Spring2012 -- DeHon
18

Finite State Machine

•  Less formally:
– Behavior depends not just on input

•  (as was the case for combinational logic)
– Also depends on state
– Can be completely different behavior in

each state
– Logic/output now depends on both

•  state and input

4

Penn ESE534 Spring2012 -- DeHon
19

Formal FSM Specification
(Abstract from implementation)

•  An FSM is a sextuple M={K,Σ,δ,s,F,Σo}
– K is finite set of states
–  Σ is a finite alphabet for inputs
– s∈K is the start state
– F⊆K is the set of final states
‒ Σo is a finite set of output symbols
‒  δ is a transition function from K×Σ to K×Σo

Relate each to concrete implementation;
 identify value of abstracting.

Penn ESE534 Spring2012 -- DeHon
20

Specifying an FSM

•  Logic becomes:
–  if (state=s1)

•  boolean logic for state 1
– (including logic for calculate next state)

– else if (state=s2)
•  boolean logic for state2

– …
–  if (state=sn)

•  boolean logic for state n

Specifying FSM

•  What’s your favorite way to specify an
FSM?

•  Another reason we need to separate
the abstract operation from the
– Specification
–  Implementation

Penn ESE534 Spring2012 -- DeHon
21

Penn ESE534 Spring2012 -- DeHon
22

•  Could be:
–  behavioral language
 {Verilog, VHDL, Bluespec}
–  computer language (C)
–  state-transition graph
–  extract from gates +

registers

FSM Specification

•  St1: goto St2
•  St2:

–  if (I==0) goto St3
–  else goto St4

•  St3:
–  output o0=1
–  goto St1

•  St4:
–  output o1=1
–  goto St2

Penn ESE534 Spring2012 -- DeHon
23

State Encoding

•  States not (necessarily) externally visible
•  We have freedom in how to encode them

– assign bits to states
•  Usually want to exploit freedom to

minimize implementation costs
– area, delay, energy

•  (there are algorithms to attack – ESE535)

Penn ESE534 Spring2012 -- DeHon
24

FSM Equivalence
•  Harder than Boolean logic
•  Doesn’t have unique canonical form
•  Consider:

– state encoding not change behavior
–  two “equivalent” FSMs may not even have

the same number of states
– can deal with infinite (unbounded) input
–  ...so cannot enumerate output in all cases

•  No direct correspondence of a truth table

5

FSM Equivalence

•  What does matter?
– What property needs to hold for two FSMs

to be equivalent?

Penn ESE534 Spring2012 -- DeHon
25

Penn ESE534 Spring2012 -- DeHon
26

FSM Equivalence

•  What matters is external observability
– FSM outputs same signals in response to

every possible input sequence
•  Is it possible to check equivalence over

an infinite number of input sequences?
•  Possible?

– Finite state suggests there is a finite
amount of checking required to verify
behavior

Penn ESE534 Spring2012 -- DeHon
27

FSM Equivalence Flavor

•  Given two FSMs A and B
– consider the composite FSM AB
–  Inputs wired together
– Outputs separate

•  Ask:
–  is it possible to get into a composite state

in which A and B output different symbols?
•  There is a literature on this

Penn ESE534 Spring2012 -- DeHon
28

Systematic FSM Design
•  Start with specification
•  Can compute Boolean logic for each state

–  If conversion…
–  including next state translation
–  Keep state symbolic (s1, s2…)

•  Assign state encodings
•  Then have combinational logic

–  has current state as part of inputs
–  produces next state as part of outputs

•  Design comb. logic and add state registers

Arbitrary Adder

•  Work through design as FSM if
necessary
– Encode inputs, outputs
– States
– Encodings
– Logic

Penn ESE534 Spring2012 -- DeHon
29

RTL

•  Register Transfer Level description
•  Registers + Boolean logic

•  Most likely: what you’ve written in
Verilog, VHDL

Penn ESE534 Spring2012 -- DeHon
30

6

Penn ESE534 Spring2012 -- DeHon
31

Datapath Reuse

Penn ESE534 Spring2012 -- DeHon
32

Reuse: “Waiting” Discipline

•  Use registers and timing for orderly
progression of data

Penn ESE534 Spring2012 -- DeHon
33

Example: 4b Ripple Adder

•  How fast can we clock this?
•  Min Clock Cycle: 8 gates A, B to S3

Penn ESE534 Spring2012 -- DeHon
34

Can we do better?

•  Clock faster,
reuse elements sooner?

Penn ESE534 Spring2012 -- DeHon
35

Stagger Inputs
•  Correct if expecting A,B[3:2] to be

staggered one cycle behind A,B[1:0]
•  …and succeeding stage expects S[3:2]

staggered from S[1:0]

Penn ESE534 Spring2012 -- DeHon
36

Align Data / Balance Paths

Good
discipline to
line up pipe
stages
in diagrams.

7

Penn ESE534 Spring2012 -- DeHon
37

Speed

How fast can
we clock this?

Assuming we
clock that fast,
what is the
delay from
A,B to S3?

S3

A0

Pipelining and Timing

•  Once introduce pipelining
–  Clock cycle = rate of reuse
–  Is not the same as the

delay to complete a
computation

Penn ESE534 Spring2012 -- DeHon
38

Pipelining and Timing

•  Throughput
–  How many results

can the circuit
produce per unit time

–  If can produce one
result per cycle,
•  Reciprocal of

clock period

•  Throughput of this
design?

Penn ESE534 Spring2012 -- DeHon
39

Pipelining and Timing

•  Latency
–  How long does it

take to produce one
result

–  Product of
•  clock cycle
•  number of clocks

between input and
output

•  Latency of this
design?

Penn ESE534 Spring2012 -- DeHon
40

Penn ESE534 Spring2012 -- DeHon
41

Example: 4b RA pipe 2

Latency and Throughput:
•  Latency: 8 gates to S3
•  Throughput: 1 result / 4 gate delays max

Throughput vs. Latency

•  Examples where throughput matters?

•  Examples where latency matters?

Penn ESE534 Spring2012 -- DeHon
42

8

Penn ESE534 Spring2012 -- DeHon
43

Deeper?

•  Can we do it again?

•  What’s our limit?

•  Why would we stop?

Penn ESE534 Spring2012 -- DeHon
44

More Reuse
•  Saw could pipeline and reuse FA more

frequently
•  Suggests we’re wasting the FA part of

the time in non-pipelined
– What is FA3 doing

 while FA0 is
computing?

3 2 0 1

Penn ESE534 Spring2012 -- DeHon
45

More Reuse (cont.)

•  If we’re willing to take 8 gate-delay
units, do we need 4 FAs?

Penn ESE534 Spring2012 -- DeHon
46

Ripple Add (pipe view)

Can pipeline to FA.

If don’t need throughput,
 reuse FA on SAME
 addition.

What if don’t need
 the throughput?

Penn ESE534 Spring2012 -- DeHon
47

Bit Serial Addition

Assumes LSB
first ordering of
input data.

Penn ESE534 Spring2012 -- DeHon
48

Bit Serial Addition: Pipelining
•  Latency and throughput?
•  Latency: 8 gate delays

– 10 for 5th output bit
•  Throughput: 1 result / 10

gate delays
•  Registers do have time

overhead
– setup, hold time, clock jitter

9

Penn ESE534 Spring2012 -- DeHon
49

Multiplication

•  Can be defined in terms of addition
•  Ask you to play with implementations

and tradeoffs in homework 2

Design Space for
Computation

Penn ESE534 Spring2012 -- DeHon
50

Penn ESE534 Spring2012 -- DeHon
51

Compute Function

•  Compute:
 y=Ax2 +Bx +C

• Assume
– D(Mpy) > D(Add)

• E.g. D(Mpy)=24, D(Add)=8
– A(Mpy) > A(Add)

• E.g. A(Mpy)=64, A(Add)=8
Penn ESE534 Spring2012 -- DeHon

52

Spatial Quadratic

•  D(Quad) = 2*D(Mpy)+D(Add) = 56
•  Throughput 1/(2*D(Mpy)+D(Add)) = 1/56
•  A(Quad) = 3*A(Mpy) + 2*A(Add) = 208

Latency?
Throughput?
Area?

Penn ESE534 Spring2012 -- DeHon
53

Pipelined Spatial Quadratic

•  D(Quad) = 3*D(Mpy) = 72
•  Throughput 1/D(Mpy) = 1/24
•  A(Quad) = 3*A(Mpy) + 2*A(Add)+6A(Reg)

 = 232

A(Reg)=4

Latency?
Throughput?
Area?

Penn ESE534 Spring2012 -- DeHon
54

Quadratic with Single
 Multiplier and Adder?

•  We’ve seen reuse to perform the same
operation
– pipelining
– bit-serial, homogeneous datapath

•  We can also reuse a resource in time to
perform a different role.

10

Repeated Operations

•  What operations occur multiple times in
this datapath?
–  x*x, A*(x*x), B*x
–  (Bx)+c, (A*x*x)+(Bx+c)

Penn ESE534 Spring2012 -- DeHon
55

Penn ESE534 Spring2012 -- DeHon
56

Quadratic Datapath

•  Start with one of
each operation

•  (alternatives where
build multiply from
adds…e.g.
homework)

Lecture Ended Here

Penn ESE534 Spring2012 -- DeHon
57

Penn ESE534 Spring2012 -- DeHon
58

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Will need to be able
to steer data
(switch
interconnections)

Penn ESE534 Spring2012 -- DeHon
59

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Inputs
a)  x, x*x
b)  x,A,B

Penn ESE534 Spring2012 -- DeHon
60

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Inputs
a)  x, x*x
b)  x,A,B

11

Penn ESE534 Spring2012 -- DeHon
61

Quadratic Datapath

•  Adder serves
multiple roles
–  (Bx)+c
–  (A*x*x)+(Bx+c)

•  Inputs
– one always mpy

output
– C, Bx+C

Penn ESE534 Spring2012 -- DeHon
62

Quadratic Datapath

Penn ESE534 Spring2012 -- DeHon
63

Quadratic Datapath
•  Add input

register for x

Penn ESE534 Spring2012 -- DeHon
64

Quadratic Control
•  Now, we just need to control the datapath
•  What control?
•  Control:

– LD x
– LD x*x
– MA Select
– MB Select
– AB Select
– LD Bx+C
– LD Y

Penn ESE534 Spring2012 -- DeHon
65

FSMD

•  FSMD = FSM + Datapath
•  Stylization for building controlled

datapaths such as this (a pattern)
•  Of course, an FSMD is just an FSM

–  it’s often easier to think about as a
datapath

– synthesis, place and route tools have been
notoriously bad about discovering/
exploiting datapath structure

Penn ESE534 Spring2012 -- DeHon
66

Quadratic FSMD

12

Penn ESE534 Spring2012 -- DeHon
67

Quadratic FSMD Control
•  S0: if (go) LD_X; goto S1

– else goto S0
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x

– goto S2
•  S2: MA_SEL=x,MB_SEL[1:0]=B

– goto S3
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A

– goto S4
•  S4: AB_SEL=Bx+C, LD_Y

– goto S0
Penn ESE534 Spring2012 -- DeHon

68

Quadratic FSMD Control
•  S0: if (go) LD_X; goto S1

–  else goto S0
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x

–  goto S2
•  S2: MA_SEL=x,MB_SEL[1:0]=B

–  goto S3
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A

–  goto S4
•  S4: AB_SEL=Bx+C, LD_Y

–  goto S0

Penn ESE534 Spring2012 -- DeHon
69

Quadratic FSM
•  D(mux3)=D(mux2)=1
•  A(mux2)=2
•  A(mux3)=3
•  A(QFSM) ~= 10
•  Latency/Throughput/Area?
•  Latency: 5*(D(MPY)+D(mux3)) = 125
•  Throughput: 1/Latency = 1/125
•  Area: A(Mpy)+A(Add)+5*A(Reg) +2*A

(Mux2)+A(Mux3)+A(QFSM) = 109
Penn ESE534 Spring2012 -- DeHon

70

Admin: Reminder

•  Next homework due Monday
•  Reading for next week online

Penn ESE534 Spring2012 -- DeHon
71

Big Ideas
[MSB Ideas]

•  Registers allow us to reuse logic
•  Can implement any FSM with gates and

registers
•  Pipelining

–  increases parallelism
– allows reuse in time (same function)

•  Control and Sequencing
–  reuse in time for different functions

•  Can tradeoff Area and Time
Penn ESE534 Spring2012 -- DeHon

72

Big Ideas
[MSB-1 Ideas]

•  RTL specification
•  FSMD idiom

