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ESE534: 
Computer Organization 

Day 4:  January 25, 2012 
Sequential Logic 

(FSMs, Pipelining, FSMD) 

Penn ESE534 Spring2012 -- DeHon 
2 

Previously 

•  Boolean Logic 
•  Gates 
•  Arithmetic 
•  Complexity of computations 

– E.g. area and delay for addition 
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Today 

•  Sequential Logic 
– Add registers, state 
– Finite-State Machines (FSM) 
– Register Transfer Level (RTL) logic 
– Datapath Reuse 
– Pipelining 
– Latency and Throughput 
– Finite-State Machines with Datapaths (FSMD) 

Preclass 

•  Can we solve the problem entirely using 
Boolean logic functions? 
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Latches, Registers 

•  New element is a state element. 
•  Canonical instance is a register: 

–  remembers the last value it was given until 
told to change 

–  typically signaled by clock 

D Q 

> 

Why Registers? 

•  Why do we need registers? 
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Reuse 
•  In general, we want to reuse our 

components in time 

– not disposable logic 

•  How do we  
guarantee disciplined reuse? 

To Reuse Logic… 

•  Make sure all logic completed evaluation 
– Outputs of gates are valid 

•  Meaningful to look at them 
– Gates are “finished” with work and ready to be 

used again 
•  Make sure consumers get value  

– Before being overwritten by new calculation 
(new inputs) 
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Synchronous Logic Model 
•  Data starts  

–  Inputs to circuit 
– Registers 

•  Perform combinational 
 (boolean) logic 

•  Outputs of logic  
– Exit circuit 
– Clocked into registers 

•  Given long enough clock 
–  Think about registers getting values updated by 

logic on each clock cycle 
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Issues of Timing... 
•  …many issues in detailed implementation 

– glitches and hazards in logic 
–  timing discipline in clocking 
– … 

•  We’re going to (mostly) work above that 
level this term. 
– Will talk about the delay of logic between 

registers 
•  Watch for these details in ESE370/570 

Preclass 

•  How do we build an adder for arbitrary 
input width? 
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Preclass 

•  What did the addition of state register(s) 
do for us? 
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Added Power 

•  Process unbounded input with finite logic 
– Ratio input:gates  arbitrarily large 

•  State is a finite (bounded) representation 
of what’s happened before  
–  finite amount of stuff can remember to 

synopsize the past 
•  State allows behavior to depend on past 

(on context) 
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Finite-State Machine (FSM) 
(Finite Automata) 

•  Logic core 
•  Plus registers to hold state 
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FSM Model 
•  FSM – a model of computations 
•  More powerful than Boolean logic 

functions 
•  Both 

– Theoretically 
– practically 

FSM Abstraction 

•  Implementation vs. Abstraction 
– Nice to separate out  

•  The abstract function want to achieve  
•  The concrete implementation 

– Saw with Boolean logic 
•  There are many ways to implement function 
•  Want to select the concrete one that minimizes costs 

•  FSMs  also separate out  
“desired function” from “implementation” 
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Formal FSM Specification 
(Abstract from implementation) 

•  An FSM is a sextuple M={K,Σ,δ,s,F,Σo} 
– K is finite set of states 
–   Σ is a finite alphabet for inputs 
– s∈K is the start state 
– F⊆K is the set of final states 
‒ Σo is a finite set of output symbols 
‒  δ is a transition function from K×Σ to K×Σo 
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Finite State Machine 

•  Less formally: 
– Behavior depends not just on input  

•  (as was the case for combinational logic) 
– Also depends on state 
– Can be completely different behavior in 

each state 
– Logic/output now depends on both 

•  state and input 
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Formal FSM Specification 
(Abstract from implementation) 

•  An FSM is a sextuple M={K,Σ,δ,s,F,Σo} 
– K is finite set of states 
–   Σ is a finite alphabet for inputs 
– s∈K is the start state 
– F⊆K is the set of final states 
‒ Σo is a finite set of output symbols 
‒  δ is a transition function from K×Σ to K×Σo 

Relate each to concrete implementation; 
                              identify value of abstracting. 
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Specifying an FSM 

•  Logic becomes: 
–  if (state=s1) 

•  boolean logic for state 1 
– (including logic for calculate next state) 

– else if (state=s2) 
•  boolean logic for state2 

– … 
–  if (state=sn) 

•  boolean logic for state n 

Specifying FSM 

•  What’s your favorite way to specify an 
FSM? 

•  Another reason we need to separate 
the abstract operation from the 
– Specification 
–  Implementation 
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•  Could be: 
–  behavioral language 
   {Verilog, VHDL, Bluespec} 
–  computer language (C) 
–  state-transition graph 
–  extract from gates + 

registers 

FSM Specification 

•  St1: goto St2 
•  St2:  

–  if (I==0) goto St3 
–  else goto St4 

•  St3: 
–  output o0=1 
–  goto St1 

•  St4: 
–  output o1=1 
–  goto St2 
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State Encoding 

•  States not (necessarily) externally visible 
•  We have freedom in how to encode them 

– assign bits to states 
•  Usually want to exploit freedom to 

minimize implementation costs 
– area, delay, energy 

•  (there are algorithms to attack – ESE535) 
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FSM Equivalence 
•  Harder than Boolean logic 
•  Doesn’t have unique canonical form 
•  Consider: 

– state encoding not change behavior 
–  two “equivalent” FSMs may not even have 

the same number of states 
– can deal with infinite (unbounded) input  
–  ...so cannot enumerate output in all cases 

•  No direct correspondence of a truth table 
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FSM Equivalence 

•  What does matter? 
– What property needs to hold for two FSMs 

to be equivalent? 
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FSM Equivalence 

•  What matters is external observability 
– FSM outputs same signals in response to 

every possible input sequence 
•  Is it possible to check equivalence over 

an infinite number of input sequences? 
•  Possible? 

– Finite state suggests there is a finite 
amount of checking required to verify 
behavior 
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FSM Equivalence Flavor 

•  Given two FSMs A and B 
– consider the composite FSM AB 
–  Inputs wired together 
– Outputs separate 

•  Ask: 
–  is it possible to get into a composite state 

in which A and B output different symbols? 
•  There is a literature on this 
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Systematic FSM Design 
•  Start with specification  
•  Can compute Boolean logic for each state 

–  If conversion… 
–  including next state translation 
–  Keep state symbolic (s1, s2…) 

•  Assign state encodings 
•  Then have combinational logic 

–  has current state as part of inputs 
–  produces next state as part of outputs 

•  Design comb. logic and add state registers 

Arbitrary Adder 

•  Work through design as FSM if 
necessary 
– Encode inputs, outputs 
– States 
– Encodings 
– Logic 
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RTL 

•  Register Transfer Level description 
•  Registers + Boolean logic 

•  Most likely: what you’ve written in 
Verilog, VHDL 
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Datapath Reuse 
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Reuse: “Waiting” Discipline 

•  Use registers and timing for orderly 
progression of data 
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Example: 4b Ripple Adder 

•  How fast can we clock this? 
•  Min Clock Cycle: 8 gates A, B to S3 
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Can we do better? 

•  Clock faster,  
reuse elements sooner? 
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Stagger Inputs 
•  Correct if expecting A,B[3:2] to be 

staggered one cycle behind A,B[1:0] 
•  …and succeeding stage expects S[3:2] 

staggered from S[1:0] 
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Align Data / Balance Paths 

Good 
discipline to 
line up pipe 
stages 
in diagrams. 
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Speed 

How fast can 
we clock this? 

Assuming we 
clock that fast, 
what is the 
delay from 
A,B to S3? 

S3 

A0 

Pipelining and Timing 

•  Once introduce pipelining 
–  Clock cycle = rate of reuse 
–  Is not the same as the 

delay to complete a 
computation 
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Pipelining and Timing 

•  Throughput 
–  How many results 

can the circuit 
produce per unit time 

–  If can produce one 
result per cycle,  
•  Reciprocal of 

clock period 

•  Throughput of this 
design? 
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Pipelining and Timing 

•  Latency 
–  How long does it 

take to produce one 
result 

–  Product of  
•  clock cycle  
•  number of clocks 

between input and 
output 

•  Latency of this 
design? 
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Example: 4b RA pipe 2 

Latency and Throughput: 
•  Latency: 8 gates to S3 
•  Throughput:  1 result / 4 gate delays max 

Throughput vs. Latency 

•  Examples where throughput matters? 

•  Examples where latency matters? 
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Deeper? 

•  Can we do it again? 

•  What’s our limit? 

•  Why would we stop? 
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More Reuse 
•  Saw could pipeline and reuse FA more 

frequently 
•  Suggests we’re wasting the FA part of 

the time in non-pipelined 
– What is FA3 doing 

 while FA0 is  
computing? 

3 2 0 1 
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More Reuse (cont.) 

•  If we’re willing to take 8 gate-delay 
units, do we need 4 FAs? 
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Ripple Add (pipe view) 

Can pipeline to FA. 

If don’t need throughput, 
   reuse FA on SAME  
   addition. 

What if don’t need 
  the throughput? 
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Bit Serial Addition 

Assumes LSB  
first ordering of 
input data. 
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Bit Serial Addition: Pipelining 
•  Latency and throughput? 
•  Latency: 8 gate delays 

– 10 for 5th output bit 
•  Throughput: 1 result / 10 

gate delays 
•  Registers do have time 

overhead 
– setup, hold time, clock jitter 
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Multiplication 

•  Can be defined in terms of addition 
•  Ask you to play with implementations 

and tradeoffs in homework 2 

Design Space for 
Computation 

Penn ESE534 Spring2012 -- DeHon 
50 

Penn ESE534 Spring2012 -- DeHon 
51 

Compute Function 

•  Compute:  
   y=Ax2 +Bx +C 

• Assume 
– D(Mpy) > D(Add) 

• E.g. D(Mpy)=24, D(Add)=8 
– A(Mpy) > A(Add) 

• E.g. A(Mpy)=64, A(Add)=8 
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Spatial Quadratic 

•  D(Quad) = 2*D(Mpy)+D(Add) = 56  
•  Throughput 1/(2*D(Mpy)+D(Add)) = 1/56 
•  A(Quad) = 3*A(Mpy) + 2*A(Add) = 208 

Latency? 
Throughput? 
Area? 
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Pipelined Spatial Quadratic 

•  D(Quad) = 3*D(Mpy) = 72 
•  Throughput 1/D(Mpy) = 1/24 
•  A(Quad) = 3*A(Mpy) + 2*A(Add)+6A(Reg) 

                                       = 232 

A(Reg)=4 

Latency? 
Throughput? 
Area? 
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Quadratic with Single 
 Multiplier and Adder? 

•  We’ve seen reuse to perform the same 
operation  
– pipelining 
– bit-serial, homogeneous datapath 

•  We can also reuse a resource in time to 
perform a different role. 
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Repeated Operations 

•  What operations occur multiple times in 
this datapath? 
–   x*x, A*(x*x), B*x 
–  (Bx)+c, (A*x*x)+(Bx+c) 
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Quadratic Datapath 

•  Start with one of 
each operation 

•  (alternatives where 
build multiply from 
adds…e.g. 
homework) 

Lecture Ended Here 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
– B*x 

•  Will need to be able 
to steer data 
(switch 
interconnections) 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
– B*x 

•  Inputs 
a)  x, x*x 
b)  x,A,B 
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Quadratic Datapath 

•  Multiplier serves 
multiple roles 
– x*x 
– A*(x*x) 
– B*x 

•  Inputs 
a)  x, x*x 
b)  x,A,B 
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Quadratic Datapath 

•  Adder serves 
multiple roles 
–  (Bx)+c 
–  (A*x*x)+(Bx+c) 

•  Inputs 
– one always mpy 

output 
– C, Bx+C 
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Quadratic Datapath 
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Quadratic Datapath 
•  Add input 

register for x 
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Quadratic Control 
•  Now, we just need to control the datapath 
•  What control? 
•  Control: 

– LD x 
– LD x*x 
– MA Select 
– MB Select 
– AB Select 
– LD Bx+C 
– LD Y 
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FSMD 

•  FSMD = FSM + Datapath 
•  Stylization for building controlled 

datapaths such as this  (a pattern) 
•  Of course, an FSMD is just an FSM 

–   it’s often easier to think about as a 
datapath 

– synthesis, place and route  tools have been 
notoriously bad about discovering/
exploiting datapath structure 
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Quadratic FSMD 
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Quadratic FSMD Control 
•  S0: if (go) LD_X; goto S1 

– else goto S0 
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x 

– goto S2 
•  S2: MA_SEL=x,MB_SEL[1:0]=B 

– goto S3 
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A 

– goto S4 
•  S4: AB_SEL=Bx+C, LD_Y 

– goto S0 
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Quadratic FSMD Control 
•  S0: if (go) LD_X; goto S1 

–  else goto S0 
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x 

–  goto S2 
•  S2: MA_SEL=x,MB_SEL[1:0]=B 

–  goto S3 
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A 

–  goto S4 
•  S4: AB_SEL=Bx+C, LD_Y 

–  goto S0 
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Quadratic FSM 
•  D(mux3)=D(mux2)=1 
•  A(mux2)=2 
•  A(mux3)=3 
•  A(QFSM) ~= 10 
•  Latency/Throughput/Area? 
•  Latency: 5*(D(MPY)+D(mux3)) = 125 
•  Throughput: 1/Latency = 1/125 
•  Area: A(Mpy)+A(Add)+5*A(Reg) +2*A

(Mux2)+A(Mux3)+A(QFSM) = 109 
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Admin: Reminder 

•  Next homework due Monday 
•  Reading for next week online 
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Big Ideas 
[MSB Ideas] 

•  Registers allow us to reuse logic 
•  Can implement any FSM with gates and 

registers  
•  Pipelining 

–  increases parallelism 
– allows reuse in time (same function) 

•  Control and Sequencing 
–  reuse in time for different functions 

•  Can tradeoff Area and Time 
Penn ESE534 Spring2012 -- DeHon 

72 

Big Ideas 
[MSB-1 Ideas] 

•  RTL specification 
•  FSMD idiom 


