
1

Penn ESE534 Spring2012 -- DeHon
1

ESE534:
Computer Organization

Day 8: February 8, 2012
Operator Sharing, Virtualization,

Programmable Architectures

Preclass Parity

•  How many gates?

•  Draw solutions

Penn ESE534 Spring2012 -- DeHon
2

Penn ESE534 Spring2012 -- DeHon
3

Previously

•  Pipelining – reuse in time for same
operation

•  Memory
•  Memories pack state compactly

– densely

Penn ESE534 Spring2012 -- DeHon
4

What is Importance of
Memory?

•  Radical Hypothesis:
– Memory is simply a very efficient

organization which allows us to store data
compactly
•  (at least, in the technologies we’ve seen to date)

– A great engineering trick to optimize
resources

•  Alternative:
– memory is a primary

Day 7

Penn ESE534 Spring2012 -- DeHon
5

Today

•  Operator Sharing (from Day 4)
•  Datapath Operation
•  Virtualization
•  Memory

– …continue unpacking the role of memory…

Design Space for
Computation

(from Day 4)

Penn ESE534 Spring2012 -- DeHon
6

2

Penn ESE534 Spring2012 -- DeHon
7

Compute Function

•  Compute:
 y=Ax2 +Bx +C

• Assume
– D(Mpy) > D(Add)

• E.g. D(Mpy)=24, D(Add)=8
– A(Mpy) > A(Add)

• E.g. A(Mpy)=64, A(Add)=8
Penn ESE534 Spring2012 -- DeHon

8

Spatial Quadratic

•  D(Quad) = 2*D(Mpy)+D(Add) = 56
•  Throughput 1/(2*D(Mpy)+D(Add)) = 1/56
•  A(Quad) = 3*A(Mpy) + 2*A(Add) = 208

Penn ESE534 Spring2012 -- DeHon
9

Pipelined Spatial Quadratic

•  D(Quad) = 3*D(Mpy) = 72
•  Throughput 1/D(Mpy) = 1/24
•  A(Quad) = 3*A(Mpy) + 2*A(Add)+6A(Reg)

 = 232

A(Reg)=4

Penn ESE534 Spring2012 -- DeHon
10

Quadratic with Single
 Multiplier and Adder?

•  We’ve seen reuse to perform the same
operation
– pipelining
– bit-serial, homogeneous datapath

•  We can also reuse a resource in time to
perform a different role.

Penn ESE534 Spring2012 -- DeHon
11

Quadratic Datapath
•  Start with one of

each operation
•  HW2.4 showed

could just user
adders

Penn ESE534 Spring2012 -- DeHon
12

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Will need to be able
to steer data
(switch
interconnections)

3

Penn ESE534 Spring2012 -- DeHon
13

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Inputs
a)  x, x*x
b)  x,A,B

Penn ESE534 Spring2012 -- DeHon
14

Quadratic Datapath

•  Multiplier serves
multiple roles
– x*x
– A*(x*x)
– B*x

•  Inputs
a)  x, x*x
b)  x,A,B

Penn ESE534 Spring2012 -- DeHon
15

Quadratic Datapath

•  Adder serves
multiple roles
–  (Bx)+c
–  (A*x*x)+(Bx+c)

•  Inputs
– one always mpy

output
– C, Bx+C

Penn ESE534 Spring2012 -- DeHon
16

Quadratic Datapath

Penn ESE534 Spring2012 -- DeHon
17

Quadratic Datapath
•  Add input

register for x

Penn ESE534 Spring2012 -- DeHon
18

Quadratic Control
•  Now, we just need to control the datapath
•  What control?
•  Control:

– LD x
– LD x*x
– MA Select
– MB Select
– AB Select
– LD Bx+C
– LD Y

4

Penn ESE534 Spring2012 -- DeHon
19

FSMD

•  FSMD = FSM + Datapath
•  Stylization for building controlled

datapaths such as this (a pattern)
•  Of course, an FSMD is just an FSM

–  it’s often easier to think about as a
datapath

– synthesis, place and route tools have been
notoriously bad about discovering/
exploiting datapath structure

Penn ESE534 Spring2012 -- DeHon
20

Quadratic FSMD

Penn ESE534 Spring2012 -- DeHon
21

Quadratic FSMD Control
•  S0: if (go) LD_X; goto S1

– else goto S0
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x

– goto S2
•  S2: MA_SEL=x,MB_SEL[1:0]=B

– goto S3
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A

– goto S4
•  S4: AB_SEL=Bx+C, LD_Y

– goto S0
Penn ESE534 Spring2012 -- DeHon

22

Quadratic FSMD Control
•  S0: if (go) LD_X; goto S1

–  else goto S0
•  S1: MA_SEL=x,MB_SEL[1:0]=x, LD_x*x

–  goto S2
•  S2: MA_SEL=x,MB_SEL[1:0]=B

–  goto S3
•  S3: AB_SEL=C,MA_SEL=x*x, MB_SEL=A

–  goto S4
•  S4: AB_SEL=Bx+C, LD_Y

–  goto S0

Penn ESE534 Spring2012 -- DeHon
23

Quadratic FSM
•  D(mux3)=D(mux2)=1
•  A(mux2)=2
•  A(mux3)=3
•  A(QFSM) ~= 10
•  Latency/Throughput/Area?
•  Latency: 5*(D(MPY)+D(mux3)) = 125
•  Throughput: 1/Latency = 1/125
•  Area: A(Mpy)+A(Add)+5*A(Reg) +2*A

(Mux2)+A(Mux3)+A(QFSM) = 109

Universal Sharing

Penn ESE534 Spring2012 -- DeHon
24

5

Penn ESE534 Spring2012 -- DeHon
25

Review

•  Given a task: y=Ax2 +Bx +C
•  Saw how to share primitive operators
•  Got down to one of each

Penn ESE534 Spring2012 -- DeHon
26

Very naively

•  Might seem we need one of each
different type of operator

Penn ESE534 Spring2012 -- DeHon
27

..But

•  Doesn’t fool us
•  We already know that nand gate

 (and many other things—HW1.3)
…. are universal

•  So, we know, we can build a universal
compute operator

Penn ESE534 Spring2012 -- DeHon

Temporal Composition

28

Penn ESE534 Spring2012 -- DeHon

Temporal

•  Don’t have to implement all the gates
 at once

•  Can reuse one gate over time

29
Penn ESE534 Spring2012 -- DeHon

Temporal Decomposition

•  Take Set of gates
•  Sort topologically

– All predecessors before successors
•  Give a unique number to each gate

– Hold value of its outputs
•  Use a memory to hold the gate values
•  Sequence through gates

30

6

Penn ESE534 Spring2012 -- DeHon

Example Logic

31
Penn ESE534 Spring2012 -- DeHon

Numbered Gates

32

Preclass

•  Number gates

Penn ESE534 Spring2012 -- DeHon
33

Penn ESE534 Spring2012 -- DeHon

nor2 Memory/Datapath

34

Penn ESE534 Spring2012 -- DeHon

Programming?

•  How do we program this netlist?

35
Penn ESE534 Spring2012 -- DeHon

Programming?

•  Program gates
– Tell each gate where to get its input

• Tell gate n where its two inputs come from
• Specify the memory location for the output

of the associated gate
– Each gate operation specified with

•  two addresses (the input sources for gate)
• This is the instruction for the gate

36

7

Penn ESE534 Spring2012 -- DeHon

nor2 Memory/Datapath

Instruction

37

Supply Instruction

•  How can we supply the sequence of
instructions to program this operation?

Penn ESE534 Spring2012 -- DeHon
38

Penn ESE534 Spring2012 -- DeHon
39

Simplest Programmable
Control

•  Use a memory to “record”
control instructions

•  “Play” control with sequence

Penn ESE534 Spring2012 -- DeHon

Temporal Gate Architecture

40

How program preclass
computation?

•  How would we program the preclass
computation?
– Complete the memory

Penn ESE534 Spring2012 -- DeHon
41

Simulate the Logic

•  For Preclass
•  Go around the room calling out:

–  Identify PC
–  Identify instruction

•  Perform nor2 on slot __ and slot ___

– Result is ___
– Store into slot ___

Penn ESE534 Spring2012 -- DeHon
42

8

Penn ESE534 Spring2012 -- DeHon
43

What does this mean?

•  With only one active component
–  nor gate

•  Can implement any function
– given appropriate

•  state (memory)
• muxes (interconnect)
• Control

Penn ESE534 Spring2012 -- DeHon
44

Defining Terms

•  Computes one
function (e.g. FP-
multiply, divider,
DCT)

•  Function defined at
fabrication time

•  Computes “any”
computable function
(e.g. Processor,
DSPs, FPGAs)

•  Function defined
after fabrication

Fixed Function: Programmable:

Penn ESE534 Spring2012 -- DeHon
45

Result

•  Can sequence together primitive
operations in time

•  Communicating state through memory
– Memory as interconnect

•  To perform “arbitrary” operations

Penn ESE534 Spring2012 -- DeHon
46

“Any” Computation?
(Universality)

•  Any computation which can “fit” on the
programmable substrate

•  Limitations: hold entire computation
and intermediate data

Penn ESE534 Spring2012 -- DeHon

Temporal-Spatial Variation

•  Can have any number of gates
– Tradeoff Area for Reduce Time….

47

Use of Memory?

•  What did we use memory for here?
•  State
•  Instructions
•  Interconnect

Penn ESE534 Spring2012 -- DeHon
48

9

Penn ESE534 Spring2012 -- DeHon
49

“Stored Program” Computer/
Processor

•  Can build a datapath that can be
programmed to perform any computation.

•  Can be built with limited hardware that is
reused in time.

•  Historically: this was a key contribution
from Penn’s Moore School
– Computer Engineers: Eckert and Mauchly
– ENIACEDVAC
–  (often credited to Von Neumann)

Penn ESE534 Spring2012 -- DeHon
50

What have we done?

•  Taken a computation: y=Ax2 +Bx +C
•  Turned it into operators and

interconnect

•  Decomposed operators into a basic
primitive:
•  nor, adds

Penn ESE534 Spring2012 -- DeHon
51

What have we done?
•  Said we can implement it on as few as

one of compute unit (nor2)

•  Added an instruction to tell single,
universal unit how to act as each
operator in original graph

•  Added a unit for state

Penn ESE534 Spring2012 -- DeHon
52

Virtualization
•  We’ve virtualized the computation
•  No longer need one physical compute

unit for each operator in original
computation

•  Can suffice with:
1.  shared operator(s)
2.  a description of how each operator

behaved
3.  a place to store the intermediate data

between operators

Penn ESE534 Spring2012 -- DeHon
53

Virtualization

Penn ESE534 Spring2012 -- DeHon
54

Why Interesting?
•  Memory compactness
•  This works and was interesting because

–  the area to describe a computation, its
interconnect, and its state

–  is much smaller than the physical area to
spatially implement the computation

•  e.g. traded multiplier for
–  few memory slots to hold state
–  few memory slots to describe operation
–  time on a shared unit (adder, gate)

10

Penn ESE534 Spring2012 -- DeHon
55

Questions?

Penn ESE534 Spring2012 -- DeHon
56

Admin

•  HW4 due Monday
•  No new reading for Monday

Penn ESE534 Spring2012 -- DeHon
57

Big Ideas
[MSB Ideas]

•  Memory: efficient way to hold state
– …and allows us to describe/implement

computations of unbounded size
•  State can be << computation [area]
•  Resource sharing: key trick to reduce

area
•  Memory key tool for Area-Time tradeoffs
•  “configuration” signals allow us to

generalize the utility of a computational
operator

Penn ESE534 Spring2012 -- DeHon
58

Big Ideas
[MSB-1 Ideas]

•  First programmable computing unit
•  Two key functions of memory

–  retiming (interconnect in time)
–  instructions

•  description of computation

