Today

- Two-Level Logic Optimization
 - Problem
 - Definitions
 - Basic Algorithm: Quine-McClusky
 - Improvements

Problem

- **Given**: Expression in combinational logic
- **Find**: Minimum (cost) sum-of-products expression
- Ex.
 - \(Y = a \cdot b \cdot c + a \cdot b \cdot c' + a' \cdot b \cdot c
 - \(Y = a \cdot b + a \cdot c

EDA Use

- Minimum size PLA, PAL, …
 - Programmable Logic Array
 - Programmable Array Logic
- Minimum number of gates for two-level implementation
- Starting point for multi-level optimization

Programmable Array Logic (PLAs)

- Directly implement flat (two-level) logic
 - \(O = a \cdot b \cdot c \cdot d + a \cdot b \cdot d + b \cdot c \cdot d
- Exploit substrate properties allow wired-OR
Wired-or

- Connect series of inputs to wire
- Any of the inputs can drive the wire high

Programmable Wired-or

- Use some memory function to programmable connect (disconnect) wires to OR
- Fuse:

Diagram Wired-or

Wired-or array

- Build into array
 - Compute many different or functions from set of inputs
Combined or-arrays to PLA

- Combine two or (nor) arrays to produce PLA (or-and / and-or array)

PLA

- Can implement each and on single line in first array
- Can implement each or on single line in second array

Strictly speaking: or in first term and in second, but with both polarities of inputs, can invert so is and-or.

Nanowire PLA

PLA and PAL

PAL = Programmable Array Logic
PAL has fixed AND plane.

EDA Use for 2-level Logic Min.

- Minimum size PAL, PLA, ...
 - Programmable Logic Array
 - Programmable Array Logic
- Minimum number of gates for two-level implementation
- Starting point for multi-level optimization
Complexity

- Set covering problem
 - NP-hard

Cost

- PLA/PAL - first order
 - number of product terms
- Abstract (mis, sis)
 - \{multilevel,sequential\} interactive synthesis
 - number of literals
 - \(\text{cost}(y=a\cdot b+a\cdot c)=4\)
- General (simple, multi-level)
 - \(\sum\text{cost}(\text{product-term})\)
 - e.g. \(\text{nand2}=4, \text{nand3}=5, \text{nand4}=6\ldots\)

Terminology (1)

- Literals -- a, /a, b, /b,
 - Qualified, single inputs
- Minterms --
 - full set of literals covering one input case
 - in \(y=a\cdot b+a\cdot c\)
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)

Terminology (2)

- Cube:
 - product covering one or more minterms
 - \(Y=a\cdot b+a\cdot c\)
 - cubes:
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)
 - \(a\cdot b\cdot c\)

Terminology (3)

- Cover:
 - set of cubes
 - sum products
 - \(\{abc, a/bc, ab/c\}\)
 - \(\{ab, ac\}\)

Truth Table

- Also represent function
 - Specify on-set only
 - \(\begin{array}{cccc|c}
 a & b & c & y \\
 \hline
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 \end{array}\)
Cube/Logic Specification

- Canonical order for variables
- Use \{0,1,\-\} to indicate input appearance in cube
 - 0 = inverted \(abc\) 1 1 1
 - 1 = not inverted \(a/bc\) 1 0 1
 - \- = not present \(ac\) 1 - 1

In General

- Three sets:
 - on-set (must be set to one by cover)
 - off-set (must be set to zero by cover)
 - don’t care set (can be zero or one)

- Don’t Cares
 - allow freedom in covering (reduce cost)
 - arise from cases where value doesn’t matter
 - e.g. outputs in non-existent FSM state
 - data bus value when not driving bus

Multiple Outputs

Truth Table:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Convert to single-output problem

- On-set for result

Multiple Outputs

- Can reduce to single output case
 - write equations on inputs and each output
 - with onset for relation being true
 - after cover
 - remove literals associated with outputs

Multiple Outputs

- Could Optimize separately
- By optimizing together
 - Maximize sharing of cubes/product-terms

Multiple Outputs

- Consider:
 - \(X=\!a/b\!+ab\!+ac\)
 - \(Y=bc\)
- Trivial solution
 - has 4 product terms

000 10
001 11
010 00
011 00
100 00
101 11
110 10
111 10

000 10
001 11
010 00
011 00
100 00
101 11
110 10
111 10

000 10
001 11
010 00
011 00
100 00
101 11
110 10
111 10

000 10
001 11
010 00
011 00
100 00
101 11
110 10
111 10
Multiple Outputs

- Consider:
 - \(X = \overline{a}b + ab + ac \)
 - \(Y = \overline{bc} \)
- Now read off cover:
 - \(Y = \overline{bc} \)
 - \(A = \overline{a}b + \overline{bc} + ab \)
 - \(= \overline{a}b + c + ab \)

Prime Implicants

- Implicant -- cube in on-set
 - (not entirely in don't-care set)
- Prime Implicant -- implicant, not contained in any other cube
 - for \(y = \overline{a}b + a^c \)
 - \(a^b \) is a prime implicant
 - \(a^b c \) is not a prime implicant (contained in \(ab, ac \))
 - I.e. largest cube still in on-set (on+dc-sets)

Prime Implicants

- Minimum cover will be made up of primes
 - less products if cover more
 - less literals in prime than contained cubes
- Necessary but not sufficient that minimum cover contain only primes
 - \(y = ab + ac + b/c \)
 - \(y = ac + b/c \)
- Number of PI’s can be exponential in input size
 - more than minterms, even!
 - Not all PI’s will be in optimum cover

Essential Prime Implicants

- Prime Implicant which contains a minterm not covered by any other PI
 - Essential PI must occur in any cover
 - \(y = ab + ac + b/c \)
 - \(ab \ 11- \ 110 111 \)
 - \(ac \ 1-1 \ 101 111 \)
 - \(b/c -10 \ 110 010 \)
 - essential (only 101)
 - essential (only 010)

Restate Goal

- Goal in terms of PIs
 - Find minimum size set of PIs which cover the on-set.

Computing Primes

- Start with minterms
 - for on-set and dc-set
- merge pairs (distance one apart)
- for each pair merged,
 - mark source cubes as covered
 - repeat merging for resulting cube set
 - until no more merging possible
- retain all unmarked cubes which aren’t entirely in dc-set
Compute Prime Example

<table>
<thead>
<tr>
<th></th>
<th>0000</th>
<th>0010</th>
<th>0101</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Covering Matrix

- Minterms × Prime Implicants

<table>
<thead>
<tr>
<th>/b/c/d</th>
<th>/abd</th>
<th>bcd</th>
<th>a/b</th>
<th>ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essential Reduction

- Must pick essential PI
 - pick and eliminate row and column

<table>
<thead>
<tr>
<th>/b/c/d</th>
<th>/abd</th>
<th>bcd</th>
<th>a/b</th>
<th>ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essential Reduction

- This case:
 - Cover determined by essentials

- General case:
 - Reduces size of problem
 - These are easy...
Dominators: Column
- If a column (PI) covers the same or strictly more than another column, can remove dominated column
 - B C D E F G H
 - C dominates B
 - G dominates H

New Essentials
- Dominance reduction may yield new essential PIs
 - C D E F G
 - 0101 X
 - 0111 X X
 - 1010 X X
 - 1110 X X
 - 1111 X X
 - C, G now essential

Dominators: Row
- If a row has the same (or strictly more) PIs than another row, the larger row dominates
 - (Note opposite of column case)
 - C D E F G
 - 0101 X
 - 0111 X X
 - 1010 X X
 - 1011 X X
 - 1110 X X
 - 1111 X X
 - 0111 dominates 0101
 - 1010 dominates 1000

Cyclic Core
- After applying reductions
 - essential
 - column dominators
 - row dominators
- May still have a non-trivial covering matrix
- How do we move forward from here?

Example
- A B C D E F G H
 - 0000 X
 - 0001 X
 - 0101 X X
 - 0111 X X
 - 1000 X X
 - 1010 X X
 - 1110 X X
 - 1111 X X
Cyclic Core

- Cannot select (e.g. essential) or exclude (e.g. dominated) a PI definitively.
- Make a guess
 - A in cover
 - A not in cover
- Proceed from there

Example

A in Cover:

0000 X
0001 X
0101 X
0111 X
1000 X
1010 X
1100 X
1110 X
1111 X

B C D E F G H

A not in Cover:

0000 X
0001 X
0101 X
0111 X
1000 X
1010 X
1100 X
1110 X
1111 X

B C D E F G H

Basic Two-Level Minimization

- Generate Prime Implicants
- Reduce (essential, dominators)
- If not done,
 - pick a cube
 - branch (back to reduce) on selected/not
 - i.e. search tree ... branch and bound
- Save smallest

Branching Search

For N primes, how large?
Branching Search w/ Implications

A in cover

A not in cover

{A, B, C}

{A, B, C}

Implications Prune Tree

Only exponential in decision where must branch

Optimization

- Summarize Minterms (signature cubes)
 - rows represent collection of minterms with same primes
- Avoid generating full set of PIs
 - pre-combining dominators during generation
- Branch-and-bound pruning
 - get lower bound on remaining cost of a cover by computing independent set of primes
 - (not necessarily maximal, that would be NP-hard)

Heuristic

- Don’t backtrack when select prime for inclusion/exclusion
 - pick cover large set of minterms/signatures
 - weight to select “hard” to cover signatures
- Generate reduced set of PIs
- Iterative improvement

Canonical Form

- Can start with any form of logical expression
- Get unique truth-table/minterms
- Problem not sensitive to input statement
 - compare covering (decomposition)
 - compare sequential programming languages
- Cost: potentially exponential explosion in minterms/PIs

Summary

- Formulate as covering problem
- Solution space restricted to PIs
- Essentials must be in solution
- Use dominators to further reduce space
- Then branching/pruning to explore rest of PIs
- Ways to reduce work
 - group minterms/PIs together early
 - mostly fall into this general scheme

Admin

- Homework #1 Due Monday
- Reading for Monday online
 - FSM Encoding
 - Should have received mail with pointer
- Office hours
 - This Friday noon→2pm
 - (same slot as class on MW)
 - More regularly, probably T4pm.
Big Ideas

- Canonical Form
 - eliminate bias of input specification
- Technique:
 - branch-and-bound
 - dominators
 - use structure of problem to derive reduction between branching selection