Placement

• **Problem**: Pick locations for all building blocks
 – minimizing energy, delay, area
 – really:
 • minimize wire length
 • minimize channel density

Bad Placement

• How bad can it be?
 – Area
 – Delay
 – Energy

Bad: Area

• All wires cross bisection
• $O(N^2)$ area
• good: $O(N)$

Bad: Delay

• All critical path wires cross chip
• Delay $= O(|\text{PATH}| \times 2 \times L_{\text{side}})$
 – [and L_{side} is $O(N)$]
• good: $O(|\text{PATH}| \times L_{\text{cell}})$
• compare 50ps gates to many nanoseconds to cross chip
Clock Cycle Radius

- Radius of logic can reach in one cycle (45 nm)
 - 1 Cycle Radius = 10
 - Few hundred PEs
- Chip side 600-700 PE
 - 400-500 thousand PEs
 - 100s of cycles to cross

Bad: Energy

- All wires cross chip:
 \(O(L_{\text{side}}) \) long \(\rightarrow O(L_{\text{side}}) \) capacitance per wire
- Recall Area \(\sim O(N^2) \)
- So \(L_{\text{side}} \rightarrow O(N) \)
 \(\times O(N) \) wires \(\rightarrow O(N^2) \) capacitance
- Good:
 \(O(1) \) long wires \(\rightarrow O(N) \) capacitance

Distance

- Can we place everything close?

Illustration

- Consider a complete tree
 - nand2’s, no fanout
 - N nodes
- Logical circuit depth?
- Circuit Area?
- Side Length?
- Average wire length between nand gates? (lower bound)

“Closeness”

- Try placing “everything” close

Another Example

- Consider a cut size \(F(N) > \sqrt{N} \)
- If optimally place all \(F(N) \) producers right next to bisection
 - How many cells deep is producer farthest from the bisection?
- Lower bound on wire length?
Problem Characteristics

- Familiar
 - NP Complete
 - local, greedy not work
 - greedy gets stuck in local minima

Constructive Placement

Basic Idea

- Partition (bisect) to define halves of chip
 - minimize wire crossing
- Recurse to refine
- When get down to single component, done

Adequate?

- Does recursive bisection capture the primary constraints of two-dimensional placement?

Problems

- Greedy, top-down cuts
 - maybe better pay cost early?
- Two-dimensional problem
 - (often) no real cost difference between H and V cuts
- Interaction between subtrees
 - not modeled by recursive bisect

Interaction
Example

```
Ideal split (not typical)
```

“Equivalent” split ignoring external constraints
Practically -- makes all H cuts also be V cuts

Interaction

```
H
```

Problem

- Need to keep track of where things are
 - outside of current partition
 - include costs induced by above
- ...but don’t necessarily know where things are
 - still solving problem

Improvement: Ordered

- Order operations
- Keep track of existing solution
- Use to constrain or pass costs to next subproblem

```
Flow cut
- use existing in src/sink
- A nets = src, B nets = sink
```

```
FM: start with fixed, unmovable nets for side-biased inputs
```

Improvement: Ordered

```
A
```

```
B
```

```
S
```

```
T
```
Improvement: Constrain
- Partition once
- Constrain movement within existing partitions
- Account for both H and V crossings
- Partition next
 - (simultaneously work parallel problems)
 - easy modification to FM

Constrain Partition

- Solve AB and CD concurrently.

Improvement: Quadrisect
- Solve more of problem at once
- Quadrisection:
 - partition into 4 bins simultaneously
 - keep track of costs all around

Quadrisect
- Modify FM to work on multiple buckets
- k-way has:
 - k(k-1) buckets
 - [from]→[to]
 - quad→12
- reformulate gains
- update still O(1)

Quadrisect
- Cases (15):
 - (1 partition) → 4
 - (2 part) → 6 = (4 choose 2)
 - (3 part) → 4 = (4 choose 3)
 - (4 part) → 1

Recurse
- Keep outside constraints
 - (cost effects)
- Don’t know detail place
- Model as at center of unrefined region
Option: Terminal Propagation

- Abstract inputs as terminals
- Partition based upon
- Represent cost effects on placement/refinement decisions

Option: Refine

- Keep refined placement
- Use in cost estimates

Problem

- Still have ordering problem
- Earlier subproblems solved with weak constraints from later
 - (cruder placement estimates)
- Solved previous case by flattening
 - …but in extreme give up divide and conquer

Iterate

- After solve later problems
- Relax solution
- Solve earlier problems again with refined placements (cost estimates)
- Repeat until converge

Iteration/Cycling

- General technique to deal with phase-ordering problem
 - what order do we perform transformations, make decisions?
 - How get accurate information to everyone
- Still basically greedy

Refinement

- Relax using overlapping windows
- Deal with edging effects
 - Huang&Kahng claim 10-15% improve
 - cycle
 - overlap
Possible Refinement

• Allow unbalanced cuts
 – most things still work
 – just distort refinement groups
 – allowing unbalance using FM quadrisection looks a bit tricky
 – gives another 5-10% improvement

Runtime

• Each gain update still O(1)
 – (bigger constants)
 – so, FM partition pass still O(N)
• O(1) iterations expected
• assume O(1) overlaps exploited
 – O(log(N)) levels
• Total: O(N log(N))
 – very fast compared to typical annealing
 – (annealing next time)

Quality: Area

<table>
<thead>
<tr>
<th>Case</th>
<th>GORDER</th>
<th>DOMINO</th>
<th>QUAD</th>
<th>GORDER</th>
<th>DOMINO</th>
</tr>
</thead>
<tbody>
<tr>
<td>pm1</td>
<td>10506</td>
<td>19653</td>
<td>10208</td>
<td>2.8%</td>
<td>-4.9%</td>
</tr>
<tr>
<td>pm2</td>
<td>48518</td>
<td>43705</td>
<td>44429</td>
<td>3.3%</td>
<td>-1.8%</td>
</tr>
<tr>
<td>in62</td>
<td>413020</td>
<td>413764</td>
<td>380104</td>
<td>15.0%</td>
<td>8.9%</td>
</tr>
<tr>
<td>in53</td>
<td>1120000</td>
<td>1048673</td>
<td>970008</td>
<td>10.5%</td>
<td>7.2%</td>
</tr>
<tr>
<td>rect</td>
<td>490</td>
<td>283</td>
<td>380</td>
<td>0.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>C10018</td>
<td>1854</td>
<td>1757</td>
<td>1820</td>
<td>1.5%</td>
<td>3.6%</td>
</tr>
<tr>
<td>C5315</td>
<td>6520</td>
<td>6512</td>
<td>4185</td>
<td>6.0%</td>
<td>-4.2%</td>
</tr>
<tr>
<td>C3288</td>
<td>8754</td>
<td>8229</td>
<td>4312</td>
<td>5.5%</td>
<td>0.3%</td>
</tr>
<tr>
<td>s1453</td>
<td>2304</td>
<td>2258</td>
<td>2555</td>
<td>3.0%</td>
<td>-2.0%</td>
</tr>
<tr>
<td>s1843</td>
<td>3588</td>
<td>3558</td>
<td>2470</td>
<td>7.5%</td>
<td>3.4%</td>
</tr>
<tr>
<td>s3578</td>
<td>8608</td>
<td>8812</td>
<td>8298</td>
<td>4.2%</td>
<td>-0.3%</td>
</tr>
<tr>
<td>9264</td>
<td>14856</td>
<td>14623</td>
<td>13618</td>
<td>6.7%</td>
<td>1.3%</td>
</tr>
<tr>
<td>s15207</td>
<td>31284</td>
<td>30959</td>
<td>29161</td>
<td>9.0%</td>
<td>6.1%</td>
</tr>
<tr>
<td>s15860</td>
<td>37920</td>
<td>35551</td>
<td>33025</td>
<td>9.2%</td>
<td>5.5%</td>
</tr>
<tr>
<td>stuart</td>
<td>4190</td>
<td>3967</td>
<td>4146</td>
<td>-0.9%</td>
<td>-5.8%</td>
</tr>
<tr>
<td>biomed</td>
<td>3677</td>
<td>35112</td>
<td>33787</td>
<td>2.6%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>aqkn</td>
<td>55646</td>
<td>55285</td>
<td>55867</td>
<td>-0.7%</td>
<td>-3.8%</td>
</tr>
<tr>
<td>gool</td>
<td>100050</td>
<td>95725</td>
<td>101030</td>
<td>-1.3%</td>
<td>-4.2%</td>
</tr>
</tbody>
</table>

Quality: Delay

• Weight edges based on criticality
 – Periodic, interleave timing analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>Measure</th>
<th>Max Intrinsic Path Delay</th>
<th>TW7.0</th>
<th>Timing QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>tract</td>
<td>Delay</td>
<td>MSTx100</td>
<td>10.6</td>
<td>17.9</td>
</tr>
<tr>
<td>struct</td>
<td>Delay</td>
<td>MSTx100</td>
<td>40.9</td>
<td>51.8</td>
</tr>
<tr>
<td>avg.</td>
<td>Delay</td>
<td>MSTx100</td>
<td>37.3</td>
<td>46.7</td>
</tr>
</tbody>
</table>

Uses

• Good by self
• Starting point for simulated annealing
 – speed convergence
• With synthesis (both high level and logic)
 – get a quick estimate of physical effects
 – play role in estimation/refinement at larger level
• Early/fast placement
 – before willing to spend time looking for best
• For fast placement where time matters
 – FPGAs, online placement

Summary

• Partition to minimize cut size
• Additional constraints to do well
 – Improving constant factors
• Quadrisection
• Keep track of estimated placement
• Relax/iterate/Refine
Admin

- **Reading for Monday**
 - Online (JSTOR): classic paper on Simulated Annealing
- **Assignment 5 out**
 - Retiming
 - Programming: 1D Placement
 - Channel width optimization

Big Ideas:

- Potential dominance of interconnect
- Divide-and-conquer
- Successive Refinement
- Phase ordering: estimate/relax/iterate