Today

• Scheduling
 – Basic problem
 – Variants
 – List scheduling approximation

General Problem

• Resources are not free
 – wires, io ports
 – functional units
 • LUTs, ALUs, Multipliers,
 – memory locations
 – memory access ports

Trick/Technique

• Resources can be shared (reused) in time
• Sharing resources can reduce
 – instantaneous resource requirements
 – total costs (area)

• Pattern: scheduled operator sharing

Example

Sharing

• Does not have to increase delay
 – w/ careful time assignment
 – can often reduce peak resource requirements
 – while obtaining original (unshared) delay
• Alternately: Minimize delay given fixed resources
Scheduling

- **Task**: assign time slots (and resources) to operations
 - **time-constrained**: minimizing peak resource requirements
 - *n.b.* time-constrained, not always constrained to minimum execution time
 - **resource-constrained**: minimizing execution time

Resource-Time Example

- **Time Constraint**:
 - $<5 \to 5
 - 5 \to 4
 - 6,7 \to 2
 - >7 \to 1

Scheduling Use

- Very general problem formulation
 - HDL/Behavioral \to RTL
 - Register/Memory allocation/scheduling
 - Instruction/Functional Unit scheduling
 - Processor tasks
 - Time-Switched Routing
 - TDMA, bus scheduling, static routing
 - Routing (share channel)

Two Types (1)

- **Data independent**
 - graph static
 - resource requirements and execution time
 - independent of data
 - schedule statically
 - maybe bounded-time guarantees
 - typical ECAD problem
Two Types (2)

• Data Dependent
 – execution time of operators variable
 • depend on data
 – flow/requirement of operators data dependent
 – if cannot bound range of variation
 • must schedule online/dynamically
 • cannot guarantee bounded-time
 – general case (i.e. halting problem)
 – typical “General-Purpose” (non-real-time) OS problem

Unbounded Problem

• Easy:
 – compute ASAP schedule
 • i.e. schedule everything as soon as predecessors allow
 – will achieve minimum time
 – won’t achieve minimum area
 • (meet resource bounds)

ASAP Schedule

• For each input
 – mark input on successor
 – if successor has all inputs marked, put in visit queue
• While visit queue not empty
 – pick node
 – update time-slot based on latest input
 – mark inputs of all successors, adding to visit queue when all inputs marked

ASAP Example

Also Useful to Define ALAP

• As Late As Possible
• Work backward from outputs of DAG
• Also achieve minimum time w/ unbounded resources
ALAP Example

ALAP and ASAP

- Difference in labeling between ASAP and ALAP is slack of node
 - Freedom to select timeslot
 - Class theme: exploit freedom to reduce costs
- If ASAP=ALAP, no freedom to schedule

ASAP, ALAP, Difference

Why hard?

- Start with Critical Path?
- Schedule on: 1 Red Resource 1 Green Resource

General

- When selecting, don’t know
 - need to tackle critical path
 - need to run task to enable work (parallelism)
- Can generalize example to single resource case
General: Why Hard

- When selecting, don’t know
 - need to tackle critical path
 - need to run task to enable work (parallelism)

Two Bounds
Bounds

- Useful to have bounds on solution
- Two:
 - CP: Critical Path
 - RB: Resource Bound

Critical Path Lower Bound

- ASAP schedule ignoring resource constraints
 - (look at length of remaining critical path)
- Certainly cannot finish any faster than that

Resource Capacity Lower Bound

- Sum up all capacity required per resource
- Divide by total resource (for type)
- Lower bound on remaining schedule time
 - (best can do is pack all use densely)
 - Ignores schedule constraints

Example

Resource Bound (2 resources) $\frac{7}{2} = 4$
Resource Bound (4 resources) $\frac{7}{4} = 2$

List Scheduling

Greedy Algorithm \rightarrow
Approximation
List Scheduling (basic algorithm flow)

- Keep a ready list of “available” nodes
 - (one whose predecessors have already been scheduled)
- Pick an unscheduled task and schedule on next available resource
- Put any tasks enabled by this one on ready list

List Scheduling

- Greedy heuristic
 - **Key Question:** How prioritize ready list?
 - What is dominant constraint?
 - least slack (worst critical path) → LPT
 - enables work
 - utilize most precious (limited) resource
 - So far:
 - seen that no single priority scheme would be optimal

List Scheduling

- Use for
 - resource constrained
 - time-constrained
 - give resource target and search for minimum resource set
- Fast: \(O(N) \to O(N\log(N)) \) depending on prioritization
- Simple, general
- How good?

Approximation

- Can we say how close an algorithm comes to achieving the optimal result?

 Technically:
 - If can show
 - \(\text{Heuristic(Prob)}/\text{Optimal(Prob)} \leq \alpha \forall \text{prob} \)
 - Then the Heuristic is an \(\alpha \)-approximation

Scheduled Example Without Precedence

Observe

- \(\exists \) optimal length \(L \)
- No idle time up to start of last job to finish
- start time of last job \(\leq L \)
- last job length \(\leq L \)
- Total LS length \(\leq 2L \)
 - Algorithm is within factor of 2 of optimum
Results

- Scheduling of identical parallel machines has a 2-approximation
 - i.e. we have a polynomial time algorithm which is guaranteed to achieve a result within a factor of two of the optimal solution.

- In fact, for precedence unconstrained there is a 4/3-approximation
 - i.e. schedule Longest Processing Time first

Recover Precedence

- With precedence we may have idle times, so we need to generalize
- Work back from last completed job
 - two cases:
 - entire machine busy
 - some predecessor in critical path is running
- Divide into two sets
 - whole machine busy times
 - critical path chain for this operator

Precedence

- Optimal Length > All busy times
 - Optimal Length ≥ Resource Bound
 - Resource Bound ≥ All busy
- Optimal Length > This Path
 - Optimal Length ≥ Critical Path
 - Critical Path ≥ This Path
- List Schedule = This path + All busy times
- List Schedule ≤ 2 *(Optimal Length)

Precedence Constrained

- Scheduling of identical parallel machines with precedence constraints has a 2-approximation.

Conclude

- Scheduling of identical parallel machines with precedence constraints has a 2-approximation.

Tighten

- LS schedule ≤ Critical Path + Resource Bound
- LS schedule ≤ Min(CP,RB) + Max(CP,RB)
- Optimal schedule ≥ Max(CP,RB)
- LS/Opt ≤ 1 + Min(CP,RB)/Max(CP,RB)

- The more one constraint dominates the closer the approximate solution to optimal (EEs think about 3dB point in frequency response)
Tightening

- Example of
 - More information about problem
 - More internal variables
 - ...allow us to state a tighter result
- 2-approx for any graph
 - Since CP may = RB
- Tighter approx as CP and RB diverge

Multiple Resource

- Previous result for homogeneous functional units
- For heterogeneous resources:
 - 2-approx for any graph
 - Since CP may = RB
 - Tighter approx as CP and RB diverge

Bounds

- Precedence case, Identical machines
 - no polynomial approximation algorithm can achieve better than 4/3 bound
 - (unless P=NP)
- Heterogeneous machines (no precedence)
 - no polynomial approximation algorithm can achieve better than 3/2 bound

Summary

- Resource sharing saves area
 - allows us to fit in fixed area
- Requires that we schedule tasks onto resources
- General kind of problem arises
- We can, sometimes, bound the “badness” of a heuristic
 - get a tighter result based on gross properties of the problem
 - approximation algorithms often a viable alternative to finding optimum
 - play role in knowing “goodness” of solution

Admin

- Move office hours to W4:30pm
- Reading on web
- Assignment 1 Due Monday

Big Ideas:

- Exploit freedom in problem to reduce costs
 - (slack in schedules)
- Use dominating effects
 - (constrained resources)
 - the more an effect dominates, the “easier” the problem
- Technique: Approximation