ESE535: Electronic Design Automation

Day 17: March 23, 2011
Two-Level Logic-Synthesis

Problem

• **Given**: Expression in combinational logic
• **Find**: Minimum (cost) sum-of-products expression
• Ex.
 - \(Y = a^*b^c + a^*b^c + a^*b^c \)
 - \(Y = a^*b + a^*c \)

EDA Use

• Minimum size PLA, PAL, …
 – Programmable Logic Array
 – Programmable Array Logic
• Minimum number of gates for two-level implementation
• Starting point for multi-level optimization

PLA

• Directly implement flat (two-level) logic
 – \(O = a^*b^c*d + a^*b^d + b^c*d \)
• Exploit substrate properties allow wired-OR
Wired-or

- Connect series of inputs to wire
- Any of the inputs can drive the wire high

Programmable Wired-or

- Use some memory function to programmable connect (disconnect) wires to OR
- Fuse:

Diagram Wired-or

Wired-or array

- Build into array
 - Compute many different or functions from set of inputs
Combined or-arrays to PLA

- Combine two or (nor) arrays to produce PLA (or-and / and-or array)

PLA

- Can implement each and on single line in first array
- Can implement each or on single line in second array

Strictly speaking: or in first term and in second, but with both polarities of inputs, can invert so is and-or.

Nanowire PLA

PLA and PAL

PAL = Programmable Array Logic
PAL has fixed OR plane.

EDA Use for 2-level Logic Min.

- Minimum size PAL, PLA, ...
 - Programmable Logic Array
 - Programmable Array Logic
- Minimum number of gates for two-level implementation
- Starting point for multi-level optimization
Complexity

• Set covering problem
 – NP-hard

Terminology (1)

• Literals -- a, /a, b, /b,
 – Qualified, single inputs
• Minterms --
 – full set of literals covering one input case
 – in y=a*b+a*c
 • a*b*c
 • a*/b*c

Cost

• PLA/PAL – to first order costs is:
 – number of product terms
• Abstract (mis, sis)
 – {multilevel,sequential} interactive synthesis
 – number of literals
 • cost(y=a*b+a*c) = 4
• General (simple, multi-level)
 – \(\sum \) cost(product-term)
 • e.g. nand2=4, nand3=5,nand4=6...

Terminology (2)

• Cube:
 – product covering one or more minterms
 – Y=a*b+a*c
 – cubes:
 • a*b*c abc
 • a*b ab
 • a*c ac

Terminology (3)

• Cover:
 – set of cubes
 – sum products
 – \{abc, a/bc, ab/c\}
 – \{ab, ac\}

Truth Table

• Also represent function
 Specify on-set only

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cube/Logic Specification

- Canonical order for variables
- Use \{0,1,-\} to indicate input appearance in cube
 - 0 = inverted
 - 1 = not inverted
 - - = not present

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

In General

- Three sets:
 - on-set (must be set to one by cover)
 - off-set (must be set to zero by cover)
 - don't care set (can be zero or one)
- Don’t Cares:
 - allow freedom in covering (reduce cost)
 - arise from cases where value doesn’t matter
 - e.g. outputs in non-existent FSM state
 - data bus value when not driving bus

Multiple Outputs

- Can reduce to single output case
 - write equations on inputs and each output
 - with onset for relation being true
 - after cover
 - remove literals associated with outputs

Multiple Outputs

- Could Optimize separately
- By optimizing together
 - Maximize sharing of cubes/product-terms

Multiple Outputs

- Consider:
 - \[X=\overline{a}/b+ab+ac \]
 - \[Y=\overline{bc} \]
- Trivial solution has 4 product terms
Multiple Outputs

• Consider:
 – $X = /a/b + ab + ac$
 – $Y = /bc$

• Now read off cover:
 – $Y = /bc$
 – $A = /a/b/c + /bc + ab$

 Only need 3 product terms (versus 4 w/ no sharing)

Prime Implicants

• Implicant -- cube in on-set
 – (not entirely in don’t-care set)

• Prime Implicant -- implicant, not contained in any other cube
 – for $y = a^*b + a^*c$
 • a^*b is a prime implicant
 • a^*b^*c is not a prime implicant (contained in ab, ac)
 – i.e. largest cube still in on-set (on+dc-sets)

Prime Implicants

• Minimum cover will be made up of primes
 – fewer products if cover more
 – fewer literals in prime than contained cubes

• Necessary but not sufficient that minimum cover contain only primes
 – $y = ab + ac + b/c$
 – $y = ac + b/c$

• Number of PI’s can be exponential in input size
 – more than minterms, even!
 – Not all PI’s will be in optimum cover

Essential Prime Implicants

• Prime Implicant which contains a minterm not covered by any other PI
 – Essential PI must occur in any cover
 – $y = ab + ac + b/c$
 – $ab\ 11\ - 110\ 111$
 – $ac\ 1-1\ 101\ 111$ * essential (only 101)
 – $b/c\ -10\ 110\ 010$ * essential (only 010)

Restate Goal

• Goal in terms of PIs
 – Find minimum size set of PIs that cover the on-set.

Computing Primes

• Start with minterms
 – for on-set and dc-set
• merge pairs (distance one apart)
• for each pair merged,
 – mark source cubes as covered
• repeat merging for resulting cube set
 – until no more merging possible
• retain all unmarked cubes which aren’t entirely in dc-set
Compute Prime Example

0 0000 0, 8 -000
5 0101 5, 7 01-1
7 0111 7,15 -111
8 1000 8, 9 100-
9 1001 9,10,11 10-0
10 1010 10,11,14,15 1-1-
11 1011 11,15 1-11
14 1110 14,15 111-
15 1111 14,15 111-

(in-class assignments, back of preclass sheet; record solutions on board.)

Note this is preclass 3.

Covering Matrix

<table>
<thead>
<tr>
<th>Minterms</th>
<th>Prime Implicants</th>
<th>Goal: minimum cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essential Reduction

- **Must pick essential PI**
 - Pick and eliminate row and column

Which essential?

<table>
<thead>
<tr>
<th>/b/c/d</th>
<th>/abd</th>
<th>bcd</th>
<th>a/b</th>
<th>ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essential Reduction

- **This case:**
 - Cover determined by essentials
 - Preclass 3: ac+a/b+/abd+/b/c/d

- **General case:**
 - Reduces size of problem
Dominators: Column

• If a column (PI) covers the same or strictly more than another column – can remove dominated column

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

C dominates B

Any others?

G dominates H

New Essentials

• Dominance reduction may yield new Essential PIs

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>110</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>111</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

C, G now essential

What’s essential?

Dominators: Row

• If a row has the same (or strictly more) PIs than another row, the larger row dominates – we can remove the dominating row

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>110</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>111</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

C, G now essential

What’s essential?

Any others?

E dominates D and F

Cover = {C, E, G}

Cyclic Core

• After applying reductions – essential – column dominators – row dominators

• May still have a non-trivial covering matrix

• How do we move forward from here?

Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclic Core

- Cannot select (e.g. essential) or exclude (e.g. dominated) a PI definitively.
- Make a guess
 - A in cover
 - A not in cover
- Proceed from there

Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A in Cover:

- C dominates B
- G dominates H

Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A not in Cover:

What now?

Basic Two-Level Minimization (espresso-exact)

- Generate Prime Implicants
- Reduce (essential, dominators)
- If not done,
 - pick a cube
 - branch (back to reduce) on selected/not
 - i.e. search tree … branch and bound
- Save smallest

Branching Search

A in cover

A not in cover

\{A,B\}, \{A,B\}, \{A\}

A and B not in cover

\{A,B,C\}, \{A,B,C\}
Branching Search w/ Implications

- A in cover
- A not in cover
- \{A/B, C\}
- \{/A,B,/C\}

Implications Prune Tree
(like BCP in SAT)

Only exponential in decision where must branch

Optimization

- Summarize Minterms (signature cubes)
 - rows represent collection of minterms with same primes
- Avoid generating full set of PIs
 - pre-combining dominators during generation
- Branch-and-bound pruning
 - get lower bound on remaining cost of a cover by computing independent set of primes
 - (not necessarily maximal, that would be NP-hard)

Heuristic

- Don’t backtrack when select prime for inclusion/exclusion
 - pick cover large set of minterms/signatures
 - weight to select “hard” to cover signatures
- Generate reduced set of PIs
- Iterative improvement

Canonical Form

- Can start with any form of logical expression
- Get unique truth-table/minterms
- Problem not sensitive to input statement
 - compare covering (decomposition)
 - compare sequential programming languages
- Cost: potentially exponential explosion in minterms/PIs

Summary

- Formulate as covering problem
- Solution space restricted to PIs
- Essentials must be in solution
- Use dominators to further reduce space
- Then branching/pruning to explore rest of PIs
- Ways to reduce work
 - group minterms/PIs together early
 - mostly fall into this general scheme

Admin

- Reading for Monday online (web)
- Assign5a graded
- Assign5b due Monday
Big Ideas

- Canonical Form
 - eliminate bias of input specification
- Technique:
 - branch-and-bound
 - pruning search – exploit structure
 - Dominators