Today: Covering Problem

- Implement a "gate-level" netlist in terms of some library of primitives
- General Formulation
 - Make it easy to change technology
 - Make it easy to experiment with library requirements
 - Evaluate benefits of new cells...
 - Evaluate architecture with different primitives

Elements of a library - 1

<table>
<thead>
<tr>
<th>Element/Area Cost</th>
<th>Tree Representation (normal form)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERTER</td>
<td>![INVERTER Diagram]</td>
</tr>
<tr>
<td>NAND2</td>
<td>![NAND2 Diagram]</td>
</tr>
<tr>
<td>NAND3</td>
<td>![NAND3 Diagram]</td>
</tr>
<tr>
<td>NAND4</td>
<td>![NAND4 Diagram]</td>
</tr>
</tbody>
</table>

Input Circuit Netlist

``subject DAG``

- Each wire is a network (net).
- Each net has a single source (the gate that drives it).
- In general, net may have multiple sinks (gates that take as input)
Input Circuit Netlist

```
subject DAG
```

- A list of the nets (netlist) fully describes the circuit
 0 nand 1 6
 1 inv 2
 2 nand 3 4

Problem Statement

Find an "optimal" (in area, delay, power) mapping of this circuit (DAG)

What's the problem?

Trivial Covering

Cost Models

Cost Model: Area

- **Assume**: Area in gates
- or, at least, can pick an area/gate
 - so proportional to gates
- *e.g.*
 - Standard Cell design
 - Standard Cell/route over cell
 - Gate array

Why covering now?

- Nice/simple cost model
- Problem can be solved well
 - somewhat clever solution
- General/powerful technique
- Show off special cases
 - harder/easier cases
- Show off things that make hard
- Show off bounding
Standard Cells
• Lay out gates so that heights match
 – Rows of adjacent cells
 – Standardized sizes
• Motivation: ease place and route

Standard Cell Area

Cost Model: Delay
• Delay in gates
 – at least assignable to gates
 • $T_{wire} \ll T_{gate}$
 • $T_{wire} \approx$ constant
 – delay exclusively/predominantly in gates
 • Gates have C_{out}, C_{in}
 • lump capacitance for output drive
 • delay $\approx T_{gate} + \text{fanout} \times C_{in}$
 • $C_{wire} \ll C_{in}$
 • or C_{wire} can lump with C_{out}/T_{gate}

Logic Delay

Parasitic Capacitances
Delay of Net

- Delay in gates
 - at least assignable to gates
 - \(T_{\text{wire}} \ll T_{\text{gate}} \)
 - \(T_{\text{wire}} \approx \text{constant} \)
 - delay exclusively/predominantly in gates
 - Gates have \(C_{\text{out}}, C_{\text{in}} \)
 - lump capacitance for output drive
 - delay \(\approx T_{\text{g}} + \text{fanout} \times C_{\text{in}} \)
 - or \(C_{\text{wire}} \) can lump with \(C_{\text{out}}/T_{\text{gate}} \)

Cost Model: Delay

- \(T_{\text{wire}}(300\mu m) \approx 1\text{ps} \)
- \(W_{\text{g}} = 0.3\mu m \)

Cost Models

- Why do I show you models?
 - not clear there’s one “right” model
 - changes over time
 - you’re going to encounter many different kinds of problems
 - want you to see formulations so can critique and develop own
 - simple cost models make problems tractable
 - are surprisingly adequate
 - simple, at least, help bound solutions
 - may be wrong today…need to rethink

Approaches

- Greedy work?
 - Greedy = pick next locally “best” choice

Greedy In → Out

- \(F = 22\text{nm CMOS} \)
 - \(T_{\text{g}}(\text{inv drive 4 inv}) \approx 1\text{ps} \)
 - \(T_{\text{wire}}(300\mu m) \approx 1\text{ps} \)
 - \(W_{\text{g}} = 0.3\mu m \)
Greedy In→Out

Greedy Out→In

But…

Greedy Problem

• What happens in the future (elsewhere in circuit) will determine what should be done at this point in the circuit.

• Can’t just pick best thing for now and be done.

Brute force?

• Pick a node (output)
• Consider
 – all possible gates which may cover that node
 – branch on all inputs after cover
 – pick least cost node
Pick a Node

Brute force?

- Pick a node (output)
- Consider
 - all possible gates which may cover that node
 - recurse on all inputs after cover
 - pick least cost node
- Explore all possible covers
 - can find optimum

Analyze brute force?

- Time?
 \[T_{\text{Brute}}(\text{node}) = \max_{i < j} \left(T_{\text{match}}(P_i) + \max_{i < j} (T_{\text{Brute}}(in_j)) \right) \]
- Say \(P \) patterns, constant time to match each
 - (if patterns long could be \(> O(1) \))
- \(P \)-way branch at each node...
 - ...exponential
 - \(O(P^{\text{depth}}) \)

Structure inherent in problem to exploit?

- There are only \(N \) unique nodes to cover!

Structure

- If subtree solutions do not depend on what happens outside of its subtree
 - separate tree
 - farther up tree
- Should only have to look at \(N \) nodes.
- Time(\(N \)) = \(N^3P^2T(\text{match}) \)
 - w/ \(P \) fixed/bounded \(\Rightarrow \) linear in \(N \)
 - w/ cleverness work isn’t \(P^2T(\text{match}) \) at every node
Idea Re-iterated

- Work from inputs
- Optimal solution to subproblem is contained in optimal, global solution
- Find optimal cover for each node
- Optimal cover:
 - examine all gates at this node
 - look at cost of gate and its inputs
 - pick least

Work front-to-back

Work Example (area)

library
test

Work Example (area)

library
test

Work Example (area)
Work Example (area)

5 + 2 + 3 = 10

3 + 5 = 8

3 + 2 = 5

5 + 4 + 5 = 14
Work Example (area)

\[8 + 2 + 3 = 13 \]

\[13 + 2 = 15 \]

\[3 + 2 + 4 = 9 \]
Work Example (area)

\[9 + 4 + 3 = 16\]

Work Example (area)

\[8 + 2 + 4 + 4 = 18\]

Work Example (area)

\[16 + 2 = 18\]

Work Example (area)

\[13 + 5 + 4 = 22\]
Work Example (area)

- Example 1:
 - Equation: $18 + 3 = 21$
 - Area: 17

- Example 2:
 - Equation: $9 + 4 + 4 = 17$
 - Area: 17

Optimal Cover

- Optimal solution:
 - Area: 31

- Solution:
 - Area: 17

Much better than 31!
Note

- There are nodes we cover which will **not** appear in final solution.

“Unused” Nodes

[Diagram of a circuit showing “Unused” Nodes]

Dynamic Programming Solution

- Solution described is general instance of dynamic programming
- Require:
 - optimal solution to subproblems is optimal solution to whole problem
 - (all optimal solutions equally good)
 - divide-and-conquer gets same (finite/small) number of subproblems
- Same technique used for instruction selection in code generation for processors

Delay

- Similar
 - Delay(node) = Delay(gate) + Max(Delay(input))

DAG

- DAG = Directed Acyclic Graph
 - Distinguish from tree (tree ⊂ DAG)
 - Distinguish from cyclic Graph
 - DAG ⊂ Directed Graph (digraph)

Trees vs. DAGs

- Optimal for trees
 - why?
 - Delay
 - Area
Not optimal for DAGs

- Why?

\[1 + 1 + 1 = 3 \]

Not optimal for DAGs (area)

- Why?

\[\text{Cost}(N) = \text{Cost}(\text{gate}) + \sum \text{Cost}(\text{input nodes}) \]

- think of sets
- cost is magnitude of set union
- **Problem:** minimum cost (magnitude) solution isn’t necessarily the best pick
 - get interaction between subproblems
 - subproblem optimum not global...

DAG Example

- Cover with 3 input gates

\[1 + 1 + 1 = 3 \]
\[3 + 3 + 1 = 7 ? \]

DAG Example

- Cover with 3 input gates
Not Optimal for DAGs

• Delay:
 – in fanout model, depends on problem you haven’t already solved (delay of node depends on number of uses)

What do people do?

• Cut DAGs at fanout nodes
• optimally solve resulting trees

• Area
 – guarantees covered once
 • get accurate costs in covering trees, made “premature” assignment of nodes to trees

• Delay
 – know where fanout is

Bounding

• Tree solution give bounds (esp. for delay)
 – single path, optimal covering for delay
 – (also make tree by replicating nodes at fanout points)
• no fanout cost give bounds
 – know you can’t do better
• delay bounds useful, too
 – know what you’re giving up for area
 – when delay matters

(Multiple Objectives?)

• Like to say, get delay, then area
 – won’t get minimum area for that delay
 – algorithm only keep best delay
 – …but best delay on off critical path piece not matter
 • …could have accepted more delay there
 – don’t know if on critical path while building subtree
 – (iterate, keep multiple solutions)

Many more details...

• Implement well

• Combine criteria

Admin

• Reading for today: blackboard
• Reading for Monday: online/Xplorer
• Office Hour: T4:30pm
 – Or make an appointment
• Project: C is common language
 – What will support
Big Ideas

- simple cost models
- problem formulation
- identifying structure in the problem
- special structure
- characteristics that make problems hard
- bounding solutions