ESE535: Electronic Design Automation

Day 11: February 20, 2013
Routing 1

Today

• Routing Cases
• Routing Problem Decomposition
• Channel Routing
• Variations
 – Over-the-cell

Routing Problem

Once know where blocks live (placement),
• How do we connect them up?
 – i.e. where do the wires go?
• In such a way as to:
 – Fit in fixed resources
 – Minimize resource requirements
 – (channel width \(\rightarrow\) area)

Routing Cases

Gate Array
Standard Cell
Full Custom

Gate Array

• Fixed Grid
• Fixed row and column width
• Must fit into prefab channel capacity
• Resource-constrained routing

• What freedom can we exploit in routing?
Gate Array

- Opportunities
 - Choice in paths
- Exploit freedom to:
 - Meet channel limits
 - Minimize channel width

Gate Array

- What other paths could the red wire take?

Semicustom Array

- Float channel widths as needed
- How do we optimize area in this case?

Semicustom Array

- Float Channel widths as needed
- Area
 - minimize total channel widths
 \[A = H^*V \]
 \[H = \Sigma H_i \]
 \[V = \Sigma V_i \]
Row-based Standard Cell
- Variable size
 - Cells
 - Channels
- Primary route within row
 - Minimize tracks in channel
- Vertical feed throughs

Standard Cell Gates
- IOs on one or both sides
- Design in Feed-thru

Full Custom / Macroblock
- Allow arbitrary geometry
 - Place larger cells
 - E.g. memory
 - Datapath blocks
- Less regular, but still have channels...

Routing Decomposed

Phased Routing
After placement...
1. Slice (macroblock case)
 - And order channels
2. Global Route
 - Which channels to use
 - (suitable approach Wednesday)
3. Channel Route
 - Today
4. Switchbox Route

Macroblock→Channel Route
- Slice into pieces
- Route each as channel
- Significance of numbers?
Macroblock ➔ Channel Route

- **Slice** into pieces
- Route each as channel
- If work inside out
 - Can expand channels as needed
 - Complete in one pass

Not all Assemblies Sliceable

- No horizontal or vertical slice will separate
- Prevents ordering that allows us to route in one pass

Switchbox Routing

- Box with 3 or 4 sides fixed
- Contrast channel routing with only 2 sides fixed

Gate Array ➔ Channel

- Global route first
 - Decide which path each signal takes
 - Sequence of channels
 - Minimize congestion
 - Wires per channel segment

Gate Array ➔ Channel

- Then Channel route each resulting channel

Std.Cell ➔ Channel Route

- Plan feed through
- Channel route each row
Channel Routing

- Key subproblem in all variants
- Pseudo 1D problem
- Given: set of terminals on one or both sides of channel
- Assign to tracks to minimize channel width

![Diagram of channel routing with terminals K, L, M, C, M, N, O, A, C, D, E, M, F.](image)

Standard Cell Area

- All cells uniform height
- Width of channel determined by routing

![Diagram of standard cell area with different height and width.](image)

Channel Abstraction

- All cells uniform height
- Width of channel determined by routing

![Diagram of channel abstraction with terminals K, L, M, N, O, A, C, D, E, M, F.](image)

Switchbox Route

- Terminals on 4 sides
- Link up terminal

![Diagram of switchbox route with terminals A, B, D, E, G, D, F, H, A, C, F, B.](image)

Trivial Channel Routing

- Assign every net its own track
 - Channel width > N (single output functions)
 - Chip bisection ∝ N → chip area N^2

![Diagram of trivial channel routing with multiple tracks.](image)
Trivial Channel Routing

• How do we do better?
 – What do we want to exploit?

Sharing Tracks

• Want to Minimize tracks used
 • Trick is to share tracks

Not that Easy

• With Two sides
 – Even assigning one track/signal may not be sufficient

Not that Easy

• With Two sides
 – Even assigning one track/signal may not be sufficient

Not that Easy

• With Two sides
 – Even assigning one track/signal may not be sufficient

Not that Easy

• With Two sides
 – Even assigning one track/signal may not be sufficient

 Valid assignment avoids overlap

Not that Easy

• With Two sides
 – Even assigning one track/signal may not be sufficient

 i.e. there are vertical constraints on ordering
Vertical Constraints

- For vertically aligned pins:
 - With single “vertical” routing layer
 - Cannot have distinct top pins on a lower track than bottom pins
 - Leads to vertical overlap
 - Produces constraint that top wire be higher track than lower
 - Combine across all top/bottom pairs
 - Leads to a Vertical Constraint Graph (VCG)

Channel Routing Complexity

- With Vertical Constraints
 - Problem becomes NP-complete
- Without Vertical Constraints
 - Can be solved optimally
 - Tracks = maximum channel density
 - Greedy algorithm

No Vertical Constraints

- Good for:
 - Single-sided channel
 - (no top and bottom pins)
 - Three layers for routing
 - Two vertical channels allow top and bottom pins to cross
 - May not be best way to use 3 layers...

Left-Edge Algorithm

1. Sort nets on leftmost end position
2. Start next lowest track; end=0
3. While there are unrouted nets with lowest left position > end of this track
 - Select unrouted net with lowest left position > end
 - Place selected net on this track
 - Update end position on this track to be end position of selected net
4. If nets remain, return to step 2

Example: Left-Edge

- Top: a b g b c d f
- Bottom: g d f e a c e
- Nets:
 - a: 1—5
 - b: 2—4
 - c: 5—6
 - d: 2—6
 - e: 4—7
 - f: 3—7
 - g: 1—3
Example: Left-Edge

• Top: a b g b c d f
• Bottom: g d f e a c e

Nets:
– a:1—5
– b:2—4
– c:5—6
– d:2—6
– e:4—7
– f:3—7
– g:1—3

• Sort Left Edge:

– a:1—5
– g:1—3
– b:2—4
– d:2—6
– e:4—7
– f:3—7
– c:5—6

Example: Left-Edge

• Top: a b g b c d f
• Bottom: g d f e a c e

• Sort Left Edge:

– Track 0: a:1—5
– Track 1: g:1—3
– b:2—4
– d:2—6
– f:3—7
– e:4—7
– c:5—6

Example: Left-Edge

• Top: a b g b c d f
• Bottom: g d f e a c e

• Sort Left Edge:

– Track 0: a:1—5
– Track 1: g:1—3, e:4—7
– Track 2: b:2—4, c:5—6
– Track 3: d:2—6
– Track 4: f:3—7
Constrained Left-Edge

1. Construct VCG
2. Sort nets on leftmost end position
3. Start new track; end=0
4. While there are nets that have
 a. No descendants in VCG
 b. And left edge > end
 1. Place net on track and update end
 2. Delete net from list, VCG
5. If there are still nets left to route, return to 2

Example: Constrained Left-Edge
- Top: a b g b c d f
- Bottom: g d f e a c e
- Vertical Constraints:
 - a→g
 - b→f
 - b→e
 - c→a
 - d→c
 - f→e

Example: Left-Edge
- Top: a b g b c d f
- Bottom: g d f e a c e
- Nets:
 - a:1—5
 - b:2—4
 - c:5—6
 - d:2—6
 - e:4—7
 - f:3—7
 - g:1—3

Example 2: ...
- Top: a a a b e d g c
- Bottom: b c d e f g f f
- Sort Left Edge:
 - b:1—4
 - a:1—3
 - c:2—8
 - d:3—6
 - e:4—5
 - f:5—8
 - c:6—7

Vertical Constraints
- Also give a lower bound on routed channel width
 - Channel width >= channel density
 - Channel width >= height of VCG graph
Example 2: ...

- Top: a a b e d g c
- Bottom: b c d e f g f f
- Sort Left Edge:
 - b: 1—4
 - a: 1—3
 - c: 2—8
 - d: 3—6
 - e: 4—5
 - f: 5—8
 - g: 6—7

VCG Cycles
- Top: a a b
- Bottom: b c a
- VCG:

No channel ordering satisfies VCG
Must relax artificial constraint of single horizontal track per signal
Dogleg: split horizontal run into multiple track segments
In general, can reduce track requirements

Dogleg Cycle Elimination
- Top: a a b
- Bottom: b c a
- Top: a1 a1/a2 b
- Bottom: b c a2
- VCG:

Dogleg Algorithm
1. Break net into segments at pin positions
2. Build VCG based on segments
3. Run constrained on segments rather than full wires
Dogleg Example (no cycle)

- Top: 1 1 2 - 2 3
- Bottom: 2 3 - 3 4

1 1 2a/2b – 2b 3b
2a 3a – 3a/b 4 4

[note: switch to numbers for terminals]

No Dogleg

- Top: 1 1 2 - 2 3
- Bottom: 2 3 - 3 4

With Dogleg

- Top: 1 1 2a/2b – 2b 3b
- Bottom: 2a 3a – 3a/b 4 4

Doglegs

- Exploiting dogleg
 - Introduces more freedom
 - Can reduce track requirements
 - Reduces height of VCG
 - In general, any unused vertical track could support some dogleg

Channel Abstraction

All cells uniform height
Width of channel determined by routing

- Exploiting dogleg
 - Introduces more freedom
 - Can reduce track requirements
- In general, any unused vertical track could support some dogleg
 - How select which signal uses track for dogleg?
 - Creates a larger optimization problem
 - Might support multiple?
Other Freedoms

- Swap equivalent pins
 - *E.g.* nand inputs equivalent
- Mirror cells
 - if allowed electrically
- Choose among cell instances
 - Permute pins

Exploit Freedom To

- Reduce channel density
- Reduce/Eliminate vertical constraints
 - Cycles
 - VGG height

Over The Cell

- Limit cell to lower metal
 - Maybe only up to M1
- Can route over with higher metal

Example: OTC

- Top: 0 1 6 1 2 3 5
- Bottom: 6 3 5 4 0 2 4

Multilayer

- With 3 layer
 - Can run channel over cells
 - Put Terminals in center of cell
Standard Cell Area

- All cells uniform height
- Width of channel determined by routing

Channel Over Cell

Route Over Cells

- If channel width < cell height
 - Routing completely on top of cells
- If channel width > cell height
 - Cell area completely hidden under routing channel
 - More typical case
 - Especially for large rows

Summary

- Decompose Routing
- Channel Routing
- Left-Edge
- Vertical Constraints
- Exploiting Freedom
 - Dogleg, pin swapping
 - Routing over logic

Big Ideas

- Decompose Problem
 - Divide and conquer
- Interrelation of components
- Structure: special case can solve optimally
- Technique: Greedy algorithm
- Use greedy as starting point for more general algorithm

Admin

- Reading for Monday online