ESE535: Electronic Design Automation

Day 19: March 27, 2013
Sequential Optimization
(FSM Encoding)

Today

- Encoding
 - Input
 - Output
- State Encoding
 - “exact” two-level

Input Encoding

- Pick codes for input cases to simplify logic
- E.g. Instruction Decoding
 - ADD, SUB, MUL, OR
- Have freedom in code assigned
- Pick code to minimize logic
 - E.g. number of product terms

Output Encoding

- Opposite problem
- Pick codes for output symbols
- E.g. allocation selection
 - Prefer N, Prefer S, Prefer E, Prefer W, No Preference
- Again, freedom in coding
- Use to maximize sharing
 - Common product terms, CSE

Finite-State Machine

- Logical behavior depends on state
- In response to inputs, may change state

State Encoding

- State encoding is a logical entity
- No a priori reason any particular state has any particular encoding
- Use freedom to simply logic
Finite State Machine

Example: Encoding Difference

<table>
<thead>
<tr>
<th>State</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S1+S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 S1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 S1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1 S2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 S2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 S3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0 S3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Similar outputs, code so S1+S2 is simple cube

0 0 0 1
1 1 1 0
1 0 0 1
0 1 0 1

S1=01
S2=11
S3=10

S1+S2 = -1

Two-Level

A_{pla} = (2*ins+outs)*prods+ flops*wflop

- inputs = PIs + state_bits
- outputs = state_bits+POs
- products terms (prods)
 - depend on state-bit encoding
 - this is where we have leverage

Two-Level Optimization

1. Idea: do symbolic minimization of two-level form
 - This represents effects of sharing
2. Generate encoding constraints from this
 - Properties code must have to maximize sharing
3. Cover
 - Like two-level (mostly...)
4. Select Codes
Kinds of Sharing

Input sharing:
- encode inputs so cover set to reduce product terms

Output sharing:
- share input cubes to produce individual output bits

<table>
<thead>
<tr>
<th>Input</th>
<th>Out1 = 11</th>
<th>Out2 = 01</th>
<th>Out3 = 10</th>
<th>Out4 = 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 inp1 01</td>
<td>110 out1</td>
<td>1100 out2</td>
<td>1111 out3</td>
<td>0000 out4</td>
</tr>
<tr>
<td>01 inp1 10</td>
<td>10 1-01</td>
<td>1100 out2</td>
<td>0000 out4</td>
<td></td>
</tr>
<tr>
<td>01 inp2 01</td>
<td>01 10 10</td>
<td>1111 out3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 inp3 01</td>
<td>11-1 01</td>
<td>0000 out4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 inp3 10</td>
<td>01 01 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Encoding

Output sharing:
- share input cubes to produce individual output bits

Input sharing:
- encode inputs so cover set to reduce product terms

Two-Level Input Oriented

- Minimize product rows
 - by exploiting common-cube
 - next-state expressions

- Does not account for possible sharing of terms to cover outputs

[DeMicheli+Brayton+SV/TR CAD v4n3p269]

Outline Two-Level Input

- Represent states as one-hot codes
- Minimize using two-level optimization
 - Include: combine compatible next states
 - 1 S1 S2 0
 - 1 S2 S2 0 → 1 (S1,S2) S2 0
- Get disjunct on states deriving next state
- Assuming no sharing due to outputs
 - gives minimum number of product terms
- Cover to achieve
 - Try to do so with minimum number of state bits

Multiple Valued Input Set

- Treat input states as a multi-valued (not just 0,1) input variable
- Effectively encode in one-hot form
 - One-hot: each state gets a bit, only one on
- Use to merge together input state sets

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 S1</td>
<td>0 100 S1 1</td>
<td>1 S1 2 S0 0</td>
</tr>
<tr>
<td>1 S1</td>
<td>1 100 S2 0</td>
<td>1 S2 2 S0 0</td>
</tr>
<tr>
<td>0 S2</td>
<td>0 010 S2 0</td>
<td>0 S2 3 S0 0</td>
</tr>
<tr>
<td>1 S3</td>
<td>1 001 S3 1</td>
<td>1 S3 3 S1 1</td>
</tr>
<tr>
<td>0 S3</td>
<td>0 001 S3 1</td>
<td>0 S3 3 S1 1</td>
</tr>
</tbody>
</table>

One-hot Minimum

- One-hot gives minimum number of product terms
- i.e. Can always maximally combine input sets into single product term
One-hot example

<table>
<thead>
<tr>
<th>Input</th>
<th>One-hot:</th>
</tr>
</thead>
<tbody>
<tr>
<td>inp1 1</td>
<td>01 100 10</td>
</tr>
<tr>
<td>inp1 0</td>
<td>01 100 10</td>
</tr>
<tr>
<td>inp2 0</td>
<td>01 100 10</td>
</tr>
<tr>
<td>inp2 1</td>
<td>01 100 10</td>
</tr>
<tr>
<td>inp3 0</td>
<td>01 100 10</td>
</tr>
<tr>
<td>inp3 1</td>
<td>01 100 10</td>
</tr>
</tbody>
</table>

Key: can define a cube to cover any subset of states

State Combining

- Follows from standard 2-level optimization with don’t-care minimization
- Effectively groups together common predecessor states as shown
- (can define to combine directly)

Example

<table>
<thead>
<tr>
<th>State</th>
<th>S</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>s6</th>
<th>s7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Two-Level Input

- One-hot identifies multivalued minimum number of product terms
- May be fewer product terms if get sharing (don’t cares) in generating the next state expressions
 - (was not part of optimization)
- Encoding places each disjunct on a unique cube face
 - Can distinguish with a single cube
- Can use fewer bits than one-hot
 - This part typically heuristic
 - Remember one-hot already minimized prod terms.

Encoding Example

<table>
<thead>
<tr>
<th>State</th>
<th>S</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>s6</th>
<th>s7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Encoding Example

<table>
<thead>
<tr>
<th>State</th>
<th>S</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>s6</th>
<th>s7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No 111 code
Input and Output

Skip?

General Problem
• Track both input and output encoding constraints

General Two-Level Strategy
1. Generate “Generalized” Prime Implicants
2. Extract/identify encoding constraints
3. Cover with minimum number of GPIs that makes encodeable
4. Encode symbolic values

Output Symbolic Sets
• Maintain output state, PIs as a set
• Represent inputs one-hot as before

Generate GPIs
• Same basic idea as PI generation – Quine-McKlusky
• …but different

Merging
• Cubes merge if
 – distance one in input
 • 000 100
 • 001 100 → 00- 100
 – inputs same, differ in multi-valued input (state)
 • 000 100
 • 000 010 → 000 110
Merging

- When merge
 - binary valued output contain outputs asserted in both (and)
 - 000 100 (foo) (o1,o2)
 - 001 100 (bar) (o1,o3) \(\Rightarrow\) 00- 100 ? (o1)
 - next state tag is union of states in merged cubes
 - 000 100 (foo) (o1,o2)
 - 001 100 (bar) (o1,o3) \(\Rightarrow\) 00- 100 (foo,bar) (o1)

Merged Outputs

- Merged outputs
 - Set of things asserted by this input
 - States would like to turn on together
 - 000 100 (foo) (o1,o2)
 - 001 100 (bar) (o1,o3) \(\Rightarrow\) 00- 100 (foo,bar) (o1)

Cancellation

- K+1 cube cancels k-cube only if
 - multivalued input is identical
 - AND next state and output identical
 - 000 100 (foo) (o1)
 - 001 100 (foo) (o1)
 - Also cancel if multivalued input contains all inputs
 - 000 111 (foo) (o1)
- Discard cube with next state containing all symbolic states and null output
 - 111 100 (foo,bar,baz…) () \(\Rightarrow\) does nothing

Example

(copy to board…work;
Note inclass exercise, back of preclass)

\[
\begin{array}{cccc}
0 & 100 & (S1) & (o1) \\
1 & 100 & (S2) & ()
\end{array}
\]

\[
\begin{array}{cccc}
0 & 010 & (S3) & ()
1 & 001 & (S3) & (o1)
0 & 001 & (S3) & (o1)
\end{array}
\]

Cancellation

- K+1 cube cancels k-cube only if
 - multivalued input is identical
 - AND next state and output identical
 - 000 100 (foo) (o1) 00- 100 (foo) (o1)
 - 001 100 (foo) (o1)
 - Also cancel if multivalued input contains all inputs
 - 000 111 (foo) (o1)
- Discard cube with next state containing all symbolic states and null output
 - 111 100 (foo,bar,baz…) () \(\Rightarrow\) does nothing

Example

\[
\begin{array}{cccc}
0 & 100 & (S1) & (o1) \\
1 & 100 & (S2) & ()
\end{array}
\]

\[
\begin{array}{cccc}
0 & 010 & (S3) & ()
1 & 001 & (S3) & (o1)
0 & 001 & (S3) & (o1)
\end{array}
\]

\[
\begin{array}{cccc}
0 & 100 & (S1,S2) & ()
0 & 100 & (S1,S3) & (o1)
0 & 110 & (S1,S3) & ()
1 & 110 & (S2) & ()
1 & 101 & (S2,S3) & ()
0 & 011 & (S2,S3) & (o1)
1 & 111 & (S2,S3) & ()
1 & 011 & (S2,S3) & (o1)
1 & 111 & (S2,S3) & ()
- & 110 & (S1,S2,S3) & ()
\end{array}
\]
Covering

- Cover with branch-and-bound similar to two-level
 - row dominance only if
 - tags of two GPIs are identical
 - OR tag of first is subset of second
- Once cover, check encodeability
 - [talk about next]
- If fail, branch-and-bound again on additional GPIs to add to satisfy encodeability

Encoding Constraints

- Minterm to symbolic state \(v \)
 - should assert \(v \)

- For all minterms \(m \)
 - \(\bigcup \) all GPIs \(\bigcap \) all symbolic tags \(e(\text{tag state}) = e(v) \)

Example

\[
\begin{array}{c}
\text{GPIs} & \text{Encoding} \\
1101 \text{ out1} & 110- (out1, out2) \\
1100 \text{ out2} & 11-1 (out1, out3) \\
1111 \text{ out3} & 0000 \text{ out4} \\
x & 0001 \text{ out4} \\
x & 0001 \text{ out4}
\end{array}
\]

OR-plane gives me OR of these two:

- \(1101 \text{ out1} \subseteq \bigcap \text{e(out2)} \bigcup \text{e(out1)} \bigcap \text{e(out3)} = \text{e(out1)} \)

To Satisfy

- Dominance and disjunctive relationships from encoding constraints
 - e(out1) \(\cap \) e(out2) \(\cup \) e(out1) \(\cap \) e(out3) = e(out1)
 - One of:
 - e(out2) > e(out1)
 - e(out3) > e(out1)
 - e(out2) \| e(out3) > e(out1)

Encodeability Graph

- \(1100 \text{ out1} \bigcup \text{e(out2)} \bigcup \text{e(out1)} \bigcap \text{e(out3)} = \text{e(out1)} \)
- \(1100 \text{ out1} \bigcap \text{e(out2)} = \text{e(out2)} \)
- \(1111 \text{ out1} \bigcap \text{e(out3)} = \text{e(out3)} \)
- \(0000 \text{ out4} = \text{e(out4)} \)
- \(0001 \text{ out4} = \text{e(out4)} \)
Encoding Constraints

- No directed cycles (proper dominance)
- Siblings in disjunctive have no directed paths between
 - (one cannot dominate other)
- No two disjunctive equality can have exactly the same siblings for different parents
- Parent of disjunctive should not dominate all sibling arcs

Encodeability Graph

- One of:
 - $e(out2) > e(out1)$
 - $e(out3) > e(out1)$
 - $e(out1) \leq e(out2) | e(out3)$

No cycles \Rightarrow encodeable

Determining Encoding

- Can turn into boolean satisfiability problem for a target code length
- All selected encoding constraints become boolean expressions
- Also uniqueness constraints

What we’ve done

- Define another problem
 - Constrained coding
- This identifies the necessary coding constraints
 - Solve optimally with SAT solver
 - Or attack heuristically

Summary

- Encoding can have a big effect on area
- Freedom in encoding allows us to maximize opportunities for sharing
- Can do minimization around unencoded to understand structure in problem outside of encoding
- Can adapt two-level covering to include and generate constraints
- Multilevel limited by our understanding of structure we can find in expressions
 - heuristics try to maximize expected structure

Today’s Big Ideas

- Exploit freedom
- Bounding solutions
- Dominators
- Formulation and Reduction
- Technique:
 - branch and bound
 - SAT
 - Understanding structure of problem
 - Creating structure in the problem
Admin

• Assignment 6, 7 out
 – For Assignment 6 you essentially write the assignment for 7
• Monday Reading on Web
• Makeup office hour today (W) at 5pm