Today

- Multilevel Synthesis/Optimization
 - Why
 - Transforms -- defined
 - Division/extraction
 - How we support transforms

Multi-level Logic

- General circuit netlist
- May have
 - sums within products
 - products within sum
 - arbitrarily deep
- \(y=((a \cdot (b+c))\cdot e)\cdot f\cdot g\cdot h\cdot i \)

Why Multi-level Logic?

- \(ab(c+d+e)(f+g) \)
- \(abcf+abdf+abef+abcg+abd+g+abeg \)
- 6 product terms \(\rightarrow \) 23 2-input gates
- vs. 3 gates: and4, or3, or2 \(\rightarrow \) 6 2-input gates
- Aside from Pterm sharing between outputs,
 - two level cannot share sub-expressions

Why Multilevel

- \(a \oplus b \)
 - \(a/b+/ab \)
- \(a \oplus b \oplus c \)
 - \(a/bc+/abc+/a/b/c+ab/c \)
- \(a \oplus b \oplus c \oplus d \)
 - \(a/bcd+/abcd+/a/b/c+d+/a/b/c+d+/a/bc/d/d+/a/bc/d/ \)

Compare

- \(a \oplus b \)
 - \(x_1=a/b+/ab \)
- \(a \oplus b \oplus c \)
 - \(x_2=x_1/c+/x_1/c \)
- \(a \oplus b \oplus c \oplus d \)
 - \(x_3=x_2/d+/x_2/d \)
Why Multilevel

- **a xor b**
 - $x_1 = a/b + ab$
- **a xor b xor c**
 - $x_2 = x_1/c + x_1^*c$
- **a xor b xor c xor d**
 - $x_3 = x_2/d + x_2^*d$

- **Multi-level**
 - exploit common sub-expressions
 - linear complexity
- **Two-level**
 - exponential complexity

Goal

- Find the structure
- Exploit to minimize gates
 - Total (area)
 - In path (delay)

Multi-level Transformations

- **Decomposition**
- **Extraction**
- **Factoring**
- **Substitution**
- **Collapsing**

[copy these to board so stay up as we move forward]

Decomposition

- $F = abc + abd + /a/c/d + /b/c/d$
 - 4 3-input + 1 4-input \Rightarrow 11 2-input gates
- $F = XY + /X/Y$
- $X = ab$
- $Y = c + d$
 - 5 2-input gates

- Note: use X and $/X$, use at multiple places

Extraction

- $F = (a + b)cd + e$
 - $G = (a + b)/e$
 - $H = cde$
- $F = XY + e$
 - $G = X/e$
 - $H = Ye$
 - $X = a + b$
 - $Y = cd$
Extraction

- \(F = (a+b)cd+e \)
- \(G = (a+b)/e \)
- \(H = cd \)
- 2-input: 4
- 3-input: 2
- \(\Rightarrow 8 \) 2-input gates

Factoring

- \(F = ac+ad+bc+bd+e \)
- \(G = X/e \)
- \(H = Y/e \)
- \(X = a+b \)
- \(Y = cd \)
- 2-input: 6

Common sub-expressions over multiple output

Factoring

- \(F = ac+ad+bc+bd+e \)
 - 4 2-input, 1 5-input \(\Rightarrow 8 \) 2-input gates
 - 9 literals
- \(F = (a+b)(c+d)+e \)
 - 4 2-input
 - 5 literals

Substitution

- \(G = a+b \)
- \(F = a+bc \)
- Substitute \(G \) into \(F \)
- \(F = G(a+c) \)
 - (verify) \(F = (a+b)(a+c) = aa+ab+ac+bc = a+bc \)
- useful if also have \(H = a+c \), then \(F = GH \)

Collapsing

- \(F = Ga+/Gb \)
- \(G = c+d \)
- \(F = ac+ad+b/c/d \)
- opposite of substitution
 - sometimes want to collapse and refactor
 - especially for delay optimization [saw last time]

Moves

- These transforms define the “moves” we can make to modify our network.
- Goal is to apply, usually repeatedly, to minimize gates
 - ...then apply as necessary to accelerate design
- MIS/SIS
 - Applies to canonical 2-input gates
 - Then covers with target gate library
 - Day 2
Division

- **Given**: function \(f \) and divisor \(p \)
- **Find**: quotient and remainder
 \[f = pq + r \]

E.g.
 - \(f = abc + abd + ef \), \(p = ab \)
 - \(q = c + d \), \(r = ef \)

Algebraic Division

- Use basic rules of algebra, rather than full boolean properties
- Computationally simple
- Weaker than boolean division
- \(f = a + bc \) \(p = (a+b) \)
- **Algebra**: not divisible
- **Boolean**: \(q = (a+c) \), \(r = 0 \)

Algebraic Division Example (adv to alg.; work ex on board)

- \(f = abc + abd + de \)
- \(p = ab + e \)
Algebraic Division Example

- \(f = abc + abd + de \), \(p = ab + e \)
- \(p = \{ ab, e \} \)
- \(h_1 = \{ c, d \} \)
- \(h_2 = \{ d \} \)
- \(h_1 \cap h_2 = \{ d \} \)
- \(f/p = d \)
- \(r = f - p \cdot (f/p) \)
- \(r = abc \)

Algebraic Division Time

- \(O(|f||p|) \) as described
 - compare every cube pair
- Sort cubes first
 - \(O((|f|+|p|)\log(|f|+|p|)) \)

Primary Divisor

- \(f/c \) such that \(c \) is a cube
- \(f = abc + abd e \)
- \(f/a = bc + bde \) is a primary divisor

Cube Free

- The only cube that divides \(p \) is 1
- \(c + de \) is cube free
- \(bc + bde \) is not cube free

Kernel

- Kernels of \(f \) are
 - cube free primary divisors of \(f \)
 - "Informally: sums w/ cubes factored out"
- \(f = abc + abd e \)
- \(f/a = c + de \) is a kernel
- \(ab \) is cokernel of \(f \) to \((c + de) \)
 - cokernels always cubes

Factoring

- \(\text{Gfactor}(f) \)
 - if (terms == 1) return(f)
 - \(p = \text{CHOOSE_DIVISOR}(f) \)
 - \((h, r) = \text{DIVIDE}(f, p) \)
 - \(f = \text{Gfactor}(h) \cdot \text{Gfactor}(p) + \text{Gfactor}(r) \)
 - return(f) // factored
Factoring

- Trick is picking divisor
 - pick from kernels
 - goal minimize literals after resubstitution
 - Re-express design using new intermediate variables
 - Variable and complement

Kernel Extraction

- Kernel1(j,g)
 - R=g
 - N max index in g
 - for(i=1 to N) if (i in 2 or more cubes)
 - c_i = largest cube divide g_i
 - if (forall k ≤ i, l_k / c_i) » R=R ∪ KERNEL1(i,g/(l_i ∩ c_i))
 - return(R)

Consider each literal for cokernel once (largest cokernels will already have been found)

Kernel Extract Example (ex. on board; adv to return to alg.)

- f=abcd+abce+abef
 - c_f = ab
 - f/c_f = cd+ce+ef
 - R={cd+ce+ef}
 - N=6
 - a,b not present
 - (cd+ce+ef)/c = e+d
 - largest cube 1

Kernel Extract Example (stay on prev. slide, ex. on board)

- f=abcd+abce+abef
 - c_f = ab
 - f/c_f = cd+ce+ef
 - R={cd+ce+ef}
 - N=6
 - a,b not present
 - (cd+ce+ef)/c = e+d

Kernel Extract Example

- Kernel1(j,g)
 - R=g
 - N max index in g
 - for(i=1 to N) if (i in 2 or more cubes)
 - c_i = largest cube divide g_i
 - if (forall k ≤ i, l_k / c_i)
 - R=R ∪ KERNEL1(i,g/(l_i ∩ c_i))
 - return(R)

Must be to Generate Non-trivial kernel

Consider each literal for cokernel once (largest cokernels will already have been found)

Extraction

Identify cube-free expressions in many functions (common sub expressions)

1. Generate kernels for each function
2. select pair such that k1∩k2 is not a cube
 - Note: k1=k2 is simplest case of this
 - but intersection case is more powerful
 - Example to come
3. new variable from intersection
 - v = k1∩k2
4. update functions (resubstitute)
 - f_i = v*(f_i/v) + r_i
 - (similar for common cubes)
Extraction Example

- \(X = ab(c(d+e)+f+g)+g \)
- \(Y = ai(c(d+e)+f+j)+k \)

- \(L = d+e \)
- \(X = ab(cL+f+g)+h \)
- \(Y = ai(cL+f+j)+k \)
- kernels: \((cL+f+g), (cL+f+j)\)
- extract: \(M = cL+f \)
- \(X = ab(M+g)+h \)
- \(Y = ai(M+f)+h \)

Extraction Example

- \(X = ab(c(d+e)+f+g)+g \)
- \(Y = ai(c(d+e)+f+j)+k \)
- \(d+e \) kernel of both
- \(L = d+e \)
- \(X = ab(cL+f+g)+h \)
- \(Y = ai(cL+f+j)+k \)

- \(L = d+e \)
- \(M = cL+f \)
- \(X = ab(M+g)+h \)
- \(Y = ai(M+f)+h \)
- no kernels
- common cube: \(aM \)

- \(N = aM \)
- \(M = cL+f \)
- \(X = ab(M+g)+h \)
- \(Y = ai(M+f)+h \)
- \(L = d+e \)
- \(X = b(N+ag)+h \)
- \(Y = i(N+aj)+k \)

Resubstitution

- Also useful to try complement on new factors
- \(f = ab+ac+b/cd \)
- \(X = b+c \)
- \(f = aX+/b/cd \)
- \(/X = /b/c \)
- \(f = aX+/Xd \)
- ...extracting complements not a direct target
Multilevel Optimization

- Unlike Two-level, very heuristic
- Not clear when done
- Goal find common terms to share
- Often start with two-level optimization
 - Identifies product term sharing
- Identify kernels and cubes
- Factor them out
- If can be used many places, get benefit
- Sis included common recipes
- More after timing analysis

Summary

- Want to exploit structure in problems to reduce (contain) size
 - common sub-expressions
- Identify component elements
 - decomposition, factoring, extraction
- Division key to these operations
- Kernels give us divisors

Big Ideas

- Exploit freedom
 - form
- Exploit structure/sharing
 - common sub expressions
- Techniques
 - Iterative Improvement
 - Refinement/relaxation

Announcement

Friday April 5, 3:30pm:

Interesting talk on “Nano-scale VLSI Technologies: Silicon & Beyond”

Dr. Kevin Zhang, Intel Fellow
Room 337 Town Building

Admin

- Everyone should have received Assignment 6 feedback in email
- Reading for Monday on blackboard
- Milestone Mondays…