Today

- Problem
- Brute-Force/Exhaustive
- Greedy
- Estimators
- Analytical Provisioning
- ILP Schedule and Provision

Previously

- General formulation for scheduled operator sharing
 - VLIW
- Fast algorithms for scheduling onto fixed resource set
 - List Scheduling
- More extensive algorithms for time-constrained
 - Force Directed, Branch-and-Bound

Today

- How do we determine the set of resources?

Today: Provisioning

- Given
 - An area budget
 - A graph to schedule
 - A library of operators
- Determine:
 - Delay minimizing set of operators
 - Or delay-achieving set of operators
 - i.e. select the operator set
Exhaustive

1. Identify all area-feasible operator sets
 - E.g. preclass exercise
2. Schedule for each
3. Select best
 • → optimal
 • Drawbacks?

Exhaustive

- How large is space of feasible operator sets?
 - As function of
 • operator types – O
 • Types: add, multiply, divide,
 • Maximum number of operators of type m
 \[m^O \]

Implication

- Feasible operator space can be too large to explore exhaustively

Greedy Incremental

- Start with one of each operator
- While (there is area to hold an operator)
 - Which single operator
 • Can be added without exceeding area limit?
 • Schedule (maybe list-schedule?)
 • Calculate benefit (maybe \(\Delta T / \Delta A \)?)
 • Pick largest benefit
 - Add one operator of that type
- How long does this run?
 - \(T_{\text{schedule}}(E)^* O(\text{operator-types} \times A) \)

Greedy Incremental

- Work Preclass with greedy incremental
 - For each step
 • half class evaluate each candidate resource

Greedy Incremental

- Start with one of each operator
- While (there is area to hold an operator)
 - Which single operator
 • Can be added without exceeding area limit?
 • Schedule (maybe list-schedule?)
 • Calculate benefit (maybe \(\Delta T / \Delta A \)?)
 • Pick largest benefit
 - Add one operator of that type
- Weakness?
Example

Find best 5 operator solution.

One of each.

<table>
<thead>
<tr>
<th>Sq</th>
<th>Dia</th>
<th>Circ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>I</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>J</td>
</tr>
<tr>
<td>H</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Example

Find best 5 operator solution.

Two Squares

<table>
<thead>
<tr>
<th>Sq</th>
<th>Dia</th>
<th>Circ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>C,D</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Example

Find best 5 operator solution.

Two Diamonds

<table>
<thead>
<tr>
<th>Sq</th>
<th>Dia</th>
<th>Circ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

Example

Find best 5 operator solution.

Two Circles

<table>
<thead>
<tr>
<th>Sq</th>
<th>Dia</th>
<th>Circ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>
Example

Which should greedy add?

Find best 5 operator solution.

Incremental addition does not accelerate.

Example

Two sqs + Two diamonds

Find best 5 operator solution.

Max effect: Incremental may not suggest next single addition.

Analytic Formulation

Challenge

- Scheduling expensive
 - $O(|E|)$ or $O(|E|^* \log(|V|))$ using list-schedule
- Results not analytic
 - Cannot write an equation around them
- Bounds are sometimes useful
 - No precedence \rightarrow is resource bound
 - Often one bound dominates
 - Latency bound unaffected by operator count

Estimations

- Step 1: estimate with resource bound
 - $O(|E|)$ vs. $O(|V|)$ evaluation
- Step 2: use estimate in equations
 - $T = \max(N_1/M_1, N_2/M_2, \ldots)$
- Most useful when $\text{RB} >> \text{CP}$

Constraints

- Let A_i be area of operator type i
- Let M_i be number of operators of type i

$$\sum A_i \times M_i \leq \text{Area}$$

(start summary of variables on board)
Achieve Time Target

- Want to achieve a schedule in T cycles
- What constraint equation does that imply? (what property must hold?)
- Each resource bound must be less than T cycles:
 - $N_i/M_i \leq T$

Algebraic Solve

- Set of equations
 - $N_i/M_i \leq T$
 - $\sum A_i M_i \leq \text{Area}$
- Assume equality for time bound
 - $N_i/M_i = T \Rightarrow M_i = N_i/T$

$$\sum A_i \times N_i \leq \text{Area}$$

Rearranging

$$\frac{\sum A_i \times N_i}{T} \leq \text{Area}$$

$$\frac{\sum A_i \times N_i}{\text{Area}} \leq T$$

Bounding T

- Gives Lower Bound on T

$$\frac{\sum A_i \times N_i}{\text{Area}} \leq T$$

Intuition: N of each is right balance given unbounded area; Scale to area available.

Preclass

- What is T_{lower} for preclass?

$$\frac{\sum A_i \times N_i}{\text{Area}} \leq T$$

$$T \geq \frac{1 \times 8 + 2 \times 4}{7} = \frac{16}{7} = 2.3 \quad T \geq 3$$

Back Substitute from T to x

- $M_i = N_i/T$

$$\frac{\sum A_i \times N_i}{\text{Area}} \leq T$$

- M_i won’t necessarily be integer
 - Round down definitely feasible solution
 - May have room to move a few up by 1
- Reduces range may need to search
 - (just over the residual area once rounded down)
Preclass

- \(M = N / T \)
- \(T \geq 3 \)
- \(M_{\text{add}}, M_{\text{mpy}} ? \)
- \(M_{\text{add}} = 8/3 \Rightarrow 2 \text{ or } 3 \)
- \(M_{\text{mpy}} = 4/3 \Rightarrow 1 \text{ or } 2 \)

Counter Example

- 1 Unit each
- Area = 4 Units
- What would analytic predict?
- What is best?
- How does CP compare to RB?
- Analytic Resource Estimate
 - Most useful when RB >> CP

Analytic Counter Example

- How would greedy incremental work on this one?

ILP

Integer Linear Programming

- Formulate set of linear equation constraints (inequalities)
 - \(Ax_0 + Bx_1 + Cx_2 \leq D \)
 - \(x_0 + x_1 = 1 \)
 - \(A, B, C, D \) – constants
 - \(x_i \) – variables to satisfy
 - No products on variables, just linear weighted sums
 - Can constrain variables to integers
 - No polynomial time guarantee
 – But often practical
 – Solvers exist (significant piece on April 1 (seriously))

ILP Provision and Schedule

Now to make it look like an ILP nail...
- Formulate operator selection and scheduling as ILP problem
Formulation

• Integer variables M_i - number of operators of type i
• 0-1 (binary) variables $x_{i,j}$ - 1 if node i is scheduled into timestep j - 0 otherwise
• Variable assignment completely specifies operator selection and schedule
• This formulation for achieving a target time T (time constrained) - j ranges 0 to $T-1$

Target $T \rightarrow \text{Min } T$

• Formulation targets T
• What if we don’t know T?
 - Want to minimize T?
• Do binary search for minimum T
 - How does that impact solution time?

Constraints

What properties must hold true for a solution to be valid?

1. Total area constraints
2. Not assign too many things to a timestep
3. Assign every node to some timestep
4. Maintain precedence

(1) Total Area

• Same as before

\[\sum A_i \times M_i \leq \text{Area} \]

(2) Not overload timestep

• For each timestep j
 - For each operator type k

\[\sum_{o_i \in F} U_k \leq M_k \]

(3) Node is scheduled

• For each node in graph

\[\sum_j x_{i,j} = 1 \]

Can narrow to sum over slack window.
(4) Precedence Holds

- For each edge from node src to node snk
 \[
 \sum_j j \times x_{src,j} - \sum_j j \times x_{snk,j} \leq -1
 \]

Can narrow to sum over slack windows.

Example (Time Permitting)

- What are the ILP equations for the preclass example?
 1. Total area constraints
 2. Not assign too many things to a timestep
 3. Assign every node to some timestep
 4. Maintain precedence

Constraints

1. Total area constraints
2. Not assign too many things to a timestep
3. Assign every node to some timestep
4. Maintain precedence

ILP Solver

- ILP Solver can take these constraints and find a solution (satisfying assignment)
 - On Wednesday, will see how to start to make this practical

Round up Algorithms and Runtimes

- Exhaustive Schedule
- Greedy Schedule
- Analytic Estimates
- ILP formulation

Big Ideas:

- Estimators
- Dominating Effects
- Reformulate as a problem we already have a solution for
 - ILP
- Technique: Greedy
- Technique: ILP
Admin

- Assignment 5 Thursday
- No class on Monday
 - Will have class on Wednesday
- No assignment 6 supplement
 - Focus on project and writeup
- Reading for Wednesday online