ESE535:
Electronic Design Automation

Day 22: April 15, 2015
Multi-level Synthesis

Today

• Multilevel Synthesis/Optimization
 – Why
 – Transforms -- defined
 – Division/extraction
 • How we support transforms

Behavioral
(C, MATLAB, …)
Arch. Select
Schedule
RTL
FSM assign
Two-level
Multilevel opt.
Covering
Retiming
Gate Netlist
Placement
Routing
Layout
Masks

Multi-level Logic

• General circuit netlist
• May have
 – sums within products
 – products within sum
 – arbitrarily deep

• \(y=((a \ (b+c)+e)fg+h)i \)

Why Multi-level Logic?

• \(ab(c+d+e)(f+g) \)
• \(abc+abdf+abef+abcg+abdg+abeg \)
• 6 product terms \(\to \) 23 2-input gates
• vs. 3 gates: and4, or3, or2 \(\to \) 6 2-input gates

• Aside from Pterm sharing between outputs,
 – two level cannot share sub-expressions

Why Multilevel

• \(a \ xor \ b \)
 – \(a/b+/ab \)
• \(a \ xor \ b \ xor \ c \)
 – \(a/bc+/abc+/a/b/c+ab/c \)
• \(a \ xor \ b \ xor \ c \ xor \ d \)
 – \(a/bcd+/abcd+/a/b/cd+/ab/cd+/a/b/c/d+/ab/c/d+/abc/d+/a/bc/d \)

Why Compare

• \(a \ xor \ b \)
 – \(x1=a/b+/ab \)
• \(a \ xor \ b \ xor \ c \)
 – \(x2=x1/c+/x1/c+ \)
• \(a \ xor \ b \ xor \ c \ xor \ d \)
 – \(x3=x2/d+/x2/d+ \)
Why Multilevel

• a \text{xor} b
 \quad x1 = a/b + ab
• a \text{xor} b \text{xor} c
 \quad x2 = x1/c + x1c
• a \text{xor} b \text{xor} c \text{xor} d
 \quad x3 = x2/d + x2d

• Multi-level
 \quad \text{exploit common sub-expressions}
 \quad \text{linear complexity}

Multi-level

• Two-level
 \quad \text{exponential complexity}

Harder than Two-Level

• Two-level already \text{NP-hard}
 \quad \text{has canonical representation}
 \quad \text{clean formulation}
 \quad \text{observed can limit to Primes}
 \quad \text{identified opportunities for pruning}

• Multi-level has more flexibility
 \quad \rightarrow \text{larger space to explore}
 \quad \text{Not formulated cleanly}

• Solution more heuristic \ldots \text{art}
 \quad \ldots\text{all problems start this way, some stay…}

Goal

• Find the structure
• Exploit to minimize gates
 \quad \text{Total (area)}
 \quad \text{In path (delay)}

Multi-level Transformations

• Decomposition
• Extraction
• Factoring
• Substitution
• Collapsing

[copy these to board so stay up as we move forward]

Decomposition

• \(F = abc + abd + a/c + d/b + c/d \)
• \(F = XY + X/Y \)
• \(X = ab \)
• \(Y = c + d \)

Decomposition

• \(F = abc + abd + a/c + d/b + c/d \)
 \quad 4 \text{ 3-input} + 1 \text{ 4-input} \rightarrow 11 \text{ 2-input gates}
• \(F = XY + X/Y \)
• \(X = ab \)
• \(Y = c + d \)
 \quad 5 \text{ 2-input gates}

\text{Note: use} \ X \text{ and } /X, \text{ use at multiple places}
Extraction

- \(F = (a+b)cd + e \)
- \(G = (a+b)/e \)
- \(H = cde \)
- \(F = XY + e \)
- \(G = X/e \)
- \(H = Ye \)
- \(X = a+b \)
- \(Y = cd \)

Extraction

- \(F = (a+b)cd + e \)
- \(G = (a+b)/e \)
- \(H = cde \)
- 2-input: 4
- 3-input: 2
 - \(\Rightarrow 8 \) 2-input gates

Common sub-expressions over multiple output

Factoring

- \(F = ac + ad + bc + bd + e \)
- \(F = (a+b)(c+d) + e \)

Factoring

- \(F = ac + ad + bc + bd + e \)
 - 4 2-input, 1 5-input \(\Rightarrow 8 \) 2-input gates
 - 9 literals
- \(F = (a+b)(c+d) + e \)
 - 4 2-input
 - 5 literals

Substitution

- \(G = a+b \)
- \(F = a+bc \)
- Substitute \(G \) into \(F \)
- \(F = G(a+c) \)
 - (verify) \(F = (a+b)(a+c) = aa + ab + ac + bc = a + bc \)
- useful if also have \(H = a+c \), then \(F = GH \)

Collapsing

- \(F = Ga + Gb \)
- \(G = c + d \)
- \(F = ac + ad + b/c/d \)
- opposite of substitution
 - sometimes want to collapse and refactor
 - especially for delay optimization [next lecture]
Moves

- These transforms define the "moves" we can make to modify our network.
- Goal is to apply, usually repeatedly, to minimize gates
 - ...then apply as necessary to accelerate design
- MIS/SIS
 - Applies to canonical 2-input gates
 - Then covers with target gate library

Division

- **Given**: function (f) and divisor (p)
- **Find**: quotient (q) and remainder (r)
 \[f = pq + r \]

E.g.

\[f = abc + abd + ef, \quad p = ab \]
\[q = c + d, \quad r = ef \]

Algebraic Division

- **Given**: function (f) and divisor (p)
- **Find**: quotient and remainder
 \[f = pq + r \]
- f and p are expressions (lists of cubes)
 - \(p = \{ a_1, a_2, \ldots \} \)
- Define: \(h_i = \{ c_j \mid a_i \ast c_j \in f \} \)
- \(f/p = h_1 \cap h_2 \cap h_3 \ldots \)
Algebraic Division

- f and p are expressions (lists of cubes)
- p = {a₁, a₂, ...}
- \(h₁ = \{c_j | a₁ \cdot c_j \in f\} \)
- \(f/p = h₁ \cap h₂ \cap h₃ \ldots \)

Algebraic Division Example

- \(f = abc +abd +de, \ p = ab + e \)
- \(p = \{ab, e\} \)
- \(h₁ = \{c,d\} \)
- \(h₂ = \{d\} \)
- \(h₁ \cap h₂ = \{d\} \)
- \(f/p = d \)
- \(r = f - p \cdot (f/p) \)
- \(r = abc +abd +de-(ab+e)d \)
- \(r = abc \)

Algebraic Division Time

- \(O(|f||p|) \) as described
 - compare every cube pair
- Sort cubes first
 - \(O((|f|+|p|)\log(|f|+|p|)) \)

Primary Divisor

- \(f/c \) such that c is a cube
- \(f = abc + abde \)
- \(f/a = bc + bde \) is a primary divisor

Cube Free

- The only cube that divides p is 1
- \(c + de \) is cube free
- \(bc + bde \) is not cube free

Kernel

- Kernels of f are
 - cube free primary divisors of f
 - Informally: sums w/ cubes factored out
- \(f = abc + abde \)
- \(f/ab = c + de \) is a kernel
- \(ab \) is cokernel of f to (c+de)
 - cokernels always cubes
Factoring

- Gfactor(f)

 if (terms==1) return(f)

 p=CHOOSE_DIVISOR(f)

 (h,r)=DIVIDE(f,p)

 f=Gfactor(h)*Gfactor(p)+Gfactor(r)

 return(f) // factored

Factoring

- Trick is picking divisor

 - pick from kernels

 - goal minimize literals after resubstitution

 - Re-express design using new intermediate variables

 - Variable and complement

Kernel Extraction

- Find $c_f = \text{largest cube factor of } f$

 $K=\text{Kernel1}(0,f/c_f)$

 if (f is cube-free)

 return(f}$∈$K

 else

 return(K)

Kernel Extract Example

(ex. on board; adv to return to alg.)

- $f=abcd+abce+abef$

 - $c_f=ab$

 - $f/c_f=cd+ce+ef$

 - $R=\{\text{cd+ce+ef}\}$

 - $N=6$

 - a,b not present

 - $(cd+ce+ef)/c\in{\text{e+d}}$

 - largest cube 1

Kernel Extract Example

(stay on prev. slide, ex. on board)

- $f=abcd+abce+abef$

 - $c_f=ab$

 - $f/c_f=cd+ce+ef$

 - $R=\{\text{cd+ce+ef}\}$

 - $N=6$

 - a,b not present

 - $(cd+ce+ef)/c\in{\text{e+d}}$

 - largest cube 1

Kernel Extract Example

(stay on prev. slide, ex. on board)

- $f=abcd+abce+abef$

 - $c_f=ab$

 - $f/c_f=cd+ce+ef$

 - $R=\{\text{cd+ce+ef}\}$

 - $N=6$

 - a,b not present

 - $(cd+ce+ef)/c\in{\text{e+d}}$

 - largest cube 1

Kernel Extract Example

(stay on prev. slide, ex. on board)

- $f=abcd+abce+abef$

 - $c_f=ab$

 - $f/c_f=cd+ce+ef$

 - $R=\{\text{cd+ce+ef}\}$

 - $N=6$

 - a,b not present

 - $(cd+ce+ef)/c\in{\text{e+d}}$

 - largest cube 1
Extraction

Identify cube-free expressions in many functions
(common sub expressions)
1. Generate kernels for each function
2. Select pair such that $k_1 \cap k_2$ is not a cube
 - Note: $k_1 \cap k_2$ is simplest case of this
 - ...but intersection case is more powerful
 - Example to come
3. New variable from intersection
 - $v = k_1 \cap k_2$
4. Update functions (resubstitute)
 - $f_i = v \cdot (f_i / v) + r_i$
 - (similar for common cubes)

Extraction Example

- $X = ab(c(d+e)+f+g)+g$
- $Y = ai(c(d+e)+f+j)+k$

- $L = d+e$
- $X = ab(cL+f+g)+h$
- $Y = ai(cL+f+j)+h$

- No kernels
- Common cube: aM

- Can collapse
 - L into M into N
 - Only used once
- Get larger common kernel N
 - Maybe useful if components becoming too small for efficient gate implementation
Resubstitution

- Also useful to try complement on new factors
- \(f = ab + ac + /b/cd \)
- \(X = b + c \)
- \(f = aX + /b/cd \)
- \(/X = /b/c \)
- …extracting complements not a direct target

Multilevel Optimization

- Unlike Two-level, very heuristic
- Not clear when done
- Goal find common terms to share
- Often start with two-level optimization
 - Identifies product term sharing
- Identify kernels and cubes
- Factor them out
- If can be used many places, get benefit
- SIS included common recipes
- More after timing analysis

Summary

- Want to exploit structure in problems to reduce (contain) size
 - common sub-expressions
- Identify component elements
 - decomposition, factoring, extraction
- Division key to these operations
- Kernels give us divisors

Big Ideas

- Exploit freedom
 - form
- Exploit structure/sharing
 - common sub expressions
- Techniques
 - Iterative Improvement
 - Refinement/relaxation

Admin

- Reading for Monday on canvas
- Updated energy model: update_model.tar
- Milestone Thursday